

Texture-GS: Disentangle the Geometry and Texture for 3D Gaussian Splatting Editing

Tian-Xing Xu¹, Wenbo Hu², Yu-Kun Lai³, Ying Shan² and Song-Hai Zhang¹

¹Tsinghua University, ²Tencent AI Lab, ³Cardiff University

Residual

Differentialble Envlight

3D-GS + Editing

Original view

3D Gaussian Spheres

Diffuse

"Turn him into Hulk

"Make it autumn"

"Make the grass on fire"

"Turn him into a clown

Surface Splatting Entangle geometry (μ , σ , o) and texture (RGB/SH)

GaussianShader

Normal

Roughness

Shading Attributes

Tint

Can we disentangle the geometry and texture for 3D-GS like mesh?

Multi-view Images

 ϕ : UV mapping

Texture

Application :

. . .

- Texture Painting
- Texture Swapping

Texture-GS: Disentangle the Geometry and Texture for 3D Gaussian Splatting Editing

Reconstruct

Texture-GS: Disentangle the Geometry and Texture for 3D Gaussian Splatting Editing

Geometry Reconstruction

Geometry Reconstruction

- → Vanilla 3D-GS → Solid Surface
- Opacity Regularization

$$\mathcal{L}_{01} = \frac{1}{N} \sum_{i=1}^{N} (\ln(o_i) + \ln(1 - o_i))$$

> Normal Regularization $\mathcal{L}_{normal} = \frac{1}{HW} ||\overline{N} - \overline{N}_{gt}||_{2}^{2}$ $\mathcal{L}_{smooth} = \frac{1}{HW} \sum_{p} \sum_{q \in \mathcal{N}(p)} \exp(-\gamma ||C_{gt}(p) - C_{gt}(q)||_{1}) ||\overline{N}(p) - \overline{N}(q)||_{1}$

1 N

UV Mapping Learning
 Texture Reconstruction

Back-project rendered depth maps to obtain sampling points on the surface

Texture Reconstruction

UV Mapping Learning

- Geometry Reconstruction
- ➤ UV Mapping Learning
 - Discard color attributes and freeze 3D Gaussian Parameters
 - → Joint learn the mapping function ϕ : 3D → 2D and inverse mapping function ϕ^{-1} : 2D → 3D

$$\mathcal{L}_{\text{cycle}} = \frac{1}{N_d} \sum_{i=1}^{N_d} ||x_i - \phi^{-1} \circ \phi(x_i)|| \quad \mathcal{L}_{\text{cycle2}} = \frac{1}{N_u} \sum_{i=1}^{N_u} ||u_i - \phi \circ \phi^{-1}(u_i)|| \\ \mathcal{L}_{\text{CD}} = \frac{1}{N_u} \sum_{i=1}^{N_u} \min_{p_j \in \mathcal{P}} ||\phi^{-1}(u_i) - p_j|| + \frac{1}{N_p} \sum_{j=1}^{N_p} \min_{u_i \in \mathcal{U}} ||\phi^{-1}(u_i) - p_j||$$

$$\sim CD = N_u \sum_{i=1}^{min} \sum_{p_j \in \mathcal{P}} || \psi^{-i}(u_i) - p_j || + N_p \sum_{j=1}^{min} \sum_{u_i \in \mathcal{U}} || \psi^{-i}(u_i) - p_j ||$$

$$\sim \text{Remove positional embedding to ensure the local continuity of the mapping function}$$

Texture-GS: Disentangle the Geometry and Texture for 3D Gaussian Splatting Editing

Texture Reconstruction

- Geometry Reconstruction
- VV Mapping Learning
- Texture Reconstruction
 - > Naïve Solution : Pre-fetch color attributes from a learnable texture image before rendering

 $\blacktriangleright \text{ Ours : Treat each 3D Gaussians as a surface (not a point) during rendering}$ $C_p = \sum_{j \in \mathcal{N}_p} c_j \alpha_j \prod_{k=1}^{j-1} (1 - \alpha_k), \quad \Longrightarrow \quad C_p = \sum_{j \in \mathcal{N}_p} \mathcal{C}(G_j, r_p) \alpha_j \prod_{k=1}^{j-1} (1 - \alpha_k).$

Ray-Gaussian Intersection

$$I(G_j, r_p) = o + \frac{(\mu_j - o) \cdot n_j}{d_p \cdot n_j} d_p.$$

Efficient UV Mapping

$$\tilde{\phi}(I(G_j, r_p)) = \phi(\mu_j) + J|_{x=\mu_j}(I(G_j, r_p) - \mu_j),$$

Texture-based 3D Gaussian Splatting

Ours : Treat each 3D Gaussians as a surface (not a point) during rendering
 Hybrid Color Representation for view-dependent appearance

$$C_p = \sum_{j \in \mathcal{N}_p} \mathcal{C}(G_j, r_p) \alpha_j \prod_{k=1}^{j-1} (1 - \alpha_k).$$

$$\mathcal{C}(G_j, r_p) = h(\tilde{\phi}(I(G_j, r_p)), \mathcal{T}) + c_j^{\mathrm{SH}},$$

Render Quality & Speed

Table 1: Comparison of novel view synthesis results on the DTU dataset.

(a) Comparison with the SOTAs							
Mathad	DTU						
method	$PSNR\uparrow$	$L1\downarrow$	$\mathrm{LPIPS}{\downarrow}$	\mathbf{FPS}			
NeuTex	30.39	0.0158	0.1613	0.025			
NGF	29.44	0.0166	0.1506	0.025			
3DGS	30.99	0.0121	0.1079	198			
Ours	30.03	0.0135	0.1440	58			

(b) Diff	erent num	ber of 3	D Gaussians
-----------------	-----------	----------	-------------

	DTU				
#Gauss	$\mathrm{PSNR}\uparrow$	$L1\downarrow$	$\mathrm{LPIPS}{\downarrow}$	\mathbf{FPS}	
100%	30.03	0.0135	0.1440	58	
50%	29.57	0.0142	0.1555	69	
20%	28.75	0.0155	0.1705	82	
5%	27.86	0.0172	0.1841	104	

Texture Swapping

Texture Painting

Fig. 7: Visualization of texture painting results of our method

Texture-GS: Disentangle the Geometry and Texture for 3D Gaussian Splatting Editing

Tian-Xing Xu et al.

Real-time Rendering Speed for Instant Preview (RTX 2080Ti)

Conclusions

- We are the first to disentangle the geometry and texture for 3D-GS, thereby enabling various editing applications.
- Surface or Point : We are the first to treat each 3D Gaussian as a shading surface (not a shading point in NeRF) during rendering.
- > Limitations :
 - Rely on the accuracy of the learned UV mapping function
 - ➤ Unconstrained UV mapping learning on objects of the same category (human faces, ...)

Future Works

➢ UV Mapping Learning

- Objects of the same category (human faces, human bodies, ...)
- More accurate UV mapping
- ➤ 3D AIGC
 - Fewer 3D Gaussians for objects with simple geometry and rich texture

Welcome to contact me for further discussion!

ControlContr

Code : https://github.com/slothfulxtx/Texture-GS Demo page : https://slothfulxtx.github.io/TexGS/