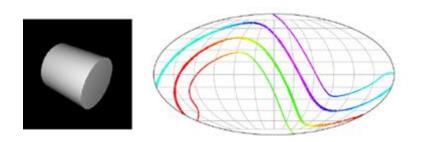
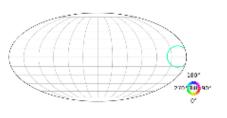

Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences

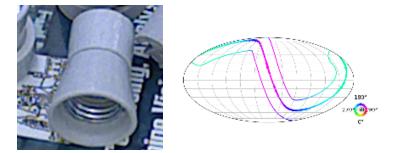
Shishir Reddy Vutukur, Junwen Huang, Rasmus Laurvig Haugaard, Benjamin Busam, Tolga Birdal



Introduction-Pose Distribution

Pose Estimation

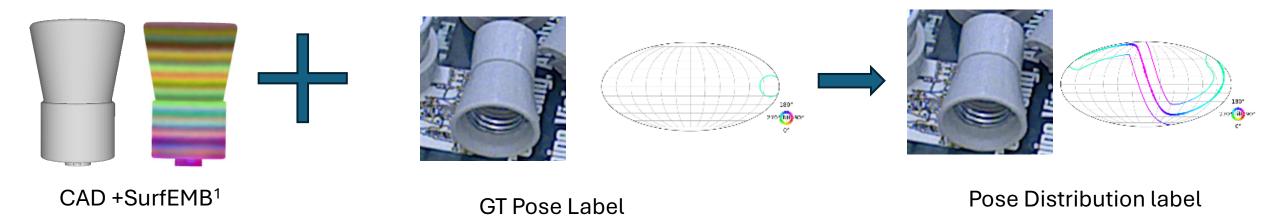

• Pose Distribution Estimation


Current Approaches

- Normalizing Flow¹, Implicit-PDF², Spyropose³ learn pose distributions for symmetric objects using a single GT pose label
- Training Data:

Given training data

Desired training data


• Can we improve the results further in presence if a CAD model is given?

[1] Yulin Liu, Haoran Liu, Yingda Yin, Yang Wang, Baoquan Chen, He Wang. "Delving into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling.", CVPR. 2023
[2] Kieran Murphy, Carlos Esteves, Varun Jampani, Srikumar Ramalingam, Ameesh Makadia. "Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold." *ICML*. 2021.

[3] Rasmus Laurvig Haugaard, Frederik Hagelskjær, Thorbjørn Mosekjær Iversen. "SpyroPose: SE(3) Pyramids for Object Pose Distribution Estimation ." ICCVW, 2023.

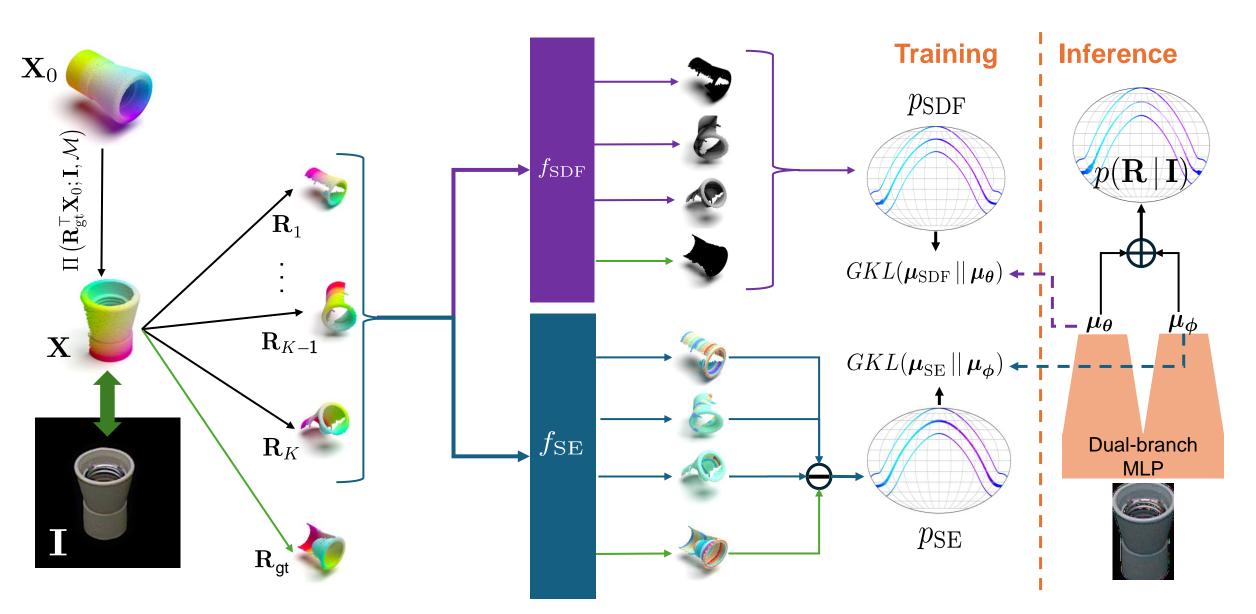
Core Idea

- Convert GT pose label to a complete pose distribution for distribution supervision
- Access to Distribution:
 - Better sampling -> learn sharper distribution
 - All symmetry configurations are learned with a single pose sample

[1] Rasmus Laurvig Haugaard, Anders Glent Buch. "SurfEmb:Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings." CVPR, 2022.

Product of Experts

• Reformulate the problem

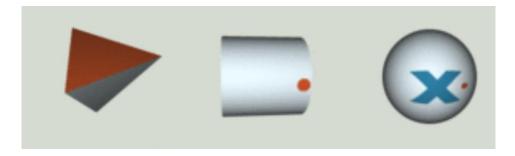

 $p(\mathbf{R}|\mathbf{I}) \propto p(\mathbf{X}'|\mathbf{I})$

- We employ two experts based on the CAD prior
 - Signed Distance Function(SDF)
 - SurfEmb(SE)

 $p(\mathbf{X'} \mid \mathbf{I}) = \hat{p}_{\text{SDF}}(\mathbf{X'} \mid \mathbf{I})\hat{p}_{\text{SE}}(\mathbf{X'} \mid \mathbf{I})$

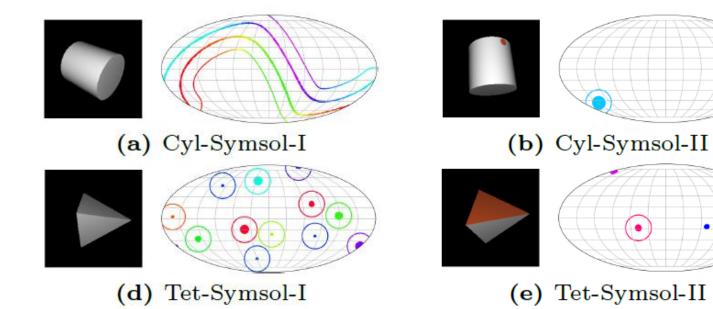
 ${f R}$: Rotation ${f I}$: Image ${f X}'$: Pointcloud rotated with ${f R}$

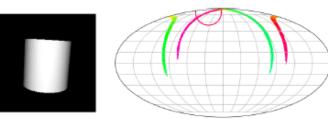
Pipeline

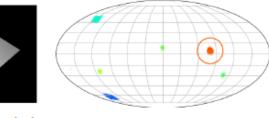

Quantitative Results

• Symsol-I Objects: Textureless symmetric objects

Deng Gil. Prok. IPDF SPNF NF \mathbf{NF} Ours \mathbf{NF} Ours Models 5 1 1 1 1 1 100k 100k 100k 100k 900k 100k 900k 100k 100k Iterations 100k 100k 45k 45k 45k 45k 45k 45k 10k 10k 45k 45k 10k Images 8.45 10.052.456.13-1.056.749.918.948.429.6610.10cone 7.1010.92 5.02 9.017.13 11.64 12.24cube -2.150.001.7911.29cyl 1.343.171.016.558.75 8.04 6.417.839.549.329.40-0.160.00-0.103.577.52 -2.14 -6.03 2.03 8.267.999.54icosa 2.560.000.437.9910.98 5.91 10.79 8.98 12.43 11.39 11.96 tet 1.860.426.399.625.06 5.82 6.88 10.38 9.69 10.64 0.81avg


Quantitative Results


• Symsol-II Objects: Symmetric objects with a marker


Obj	Deng	Gil.	Prok.	IPDF	SP	SP-10k	NF-10k	NF	Ours-10k	Ours
SphX	3.41	5.61	-1.90	9.59	11.36	7.67	7.62	12.37	6.32	10.93
cylO	5.28	7.17	6.45	9.20	11.61	9.11	6.99	12.92	11.57	12.18
									11.53	
LL	4.86	5.99	2.77	9.86	11.56	7.76	6.04	12.94	9.80	11.83

Qualitative Results

(c) Cyl-Symsol-II

(f) Tet-Symsol-II

Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences

Shishir Reddy Vutukur, Junwen Huang, Rasmus Laurvig Haugaard, Benjamin Busam, Tolga Birdal

