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Task: Object Detection and Trajectory Forecasting

● Input: past LiDAR sweeps and high-definition maps
● Output: Object detections and trajectory forecasts (multiple hypothesis)
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Background: Previous approaches

● Split reasoning about the present and future into separate cascading modules
● Suffer from narrow interfaces and compounding errors
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Background: Modular detection-tracking-forecasting

● A detection, tracker, and forecasting modules are cascaded
● These approaches suffer from narrow interfaces and compounding errors
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Background: Prior end-to-end detection and forecasting

● Tracker is replaced by object features from the LiDAR backbone
● These approaches have wider interfaces, but are still cascading
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DeTra: Formulating the problem as trajectory refinement

● Object queries (features) and poses (coordinates) represent trajectories
○ t = 0 corresponds to the detection
○ t > 0 corresponds to the forecasts

● These are refined jointly over multiple refinement transformer blocks
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DeTra: Model architecture
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DeTra: Attention layers
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DeTra: Training
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DeTra: Refinement Results
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DeTra: Comparison results
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Conclusion

We introduce DeTra, a unified model for object detection and trajectory forecasting

● Formulates detection and forecasting as a single trajectory refinement problem

● Flexible architecture that can handle heterogeneous inputs

● Performs strongly in Argoverse 2 Sensor and Waymo Open Dataset

● Design choices are validated through extensive ablations

○ Refinement is key

○ Leveraging geometric priors in cross-attention is important

○ Every proposed component has a positive contribution


