

MILANO

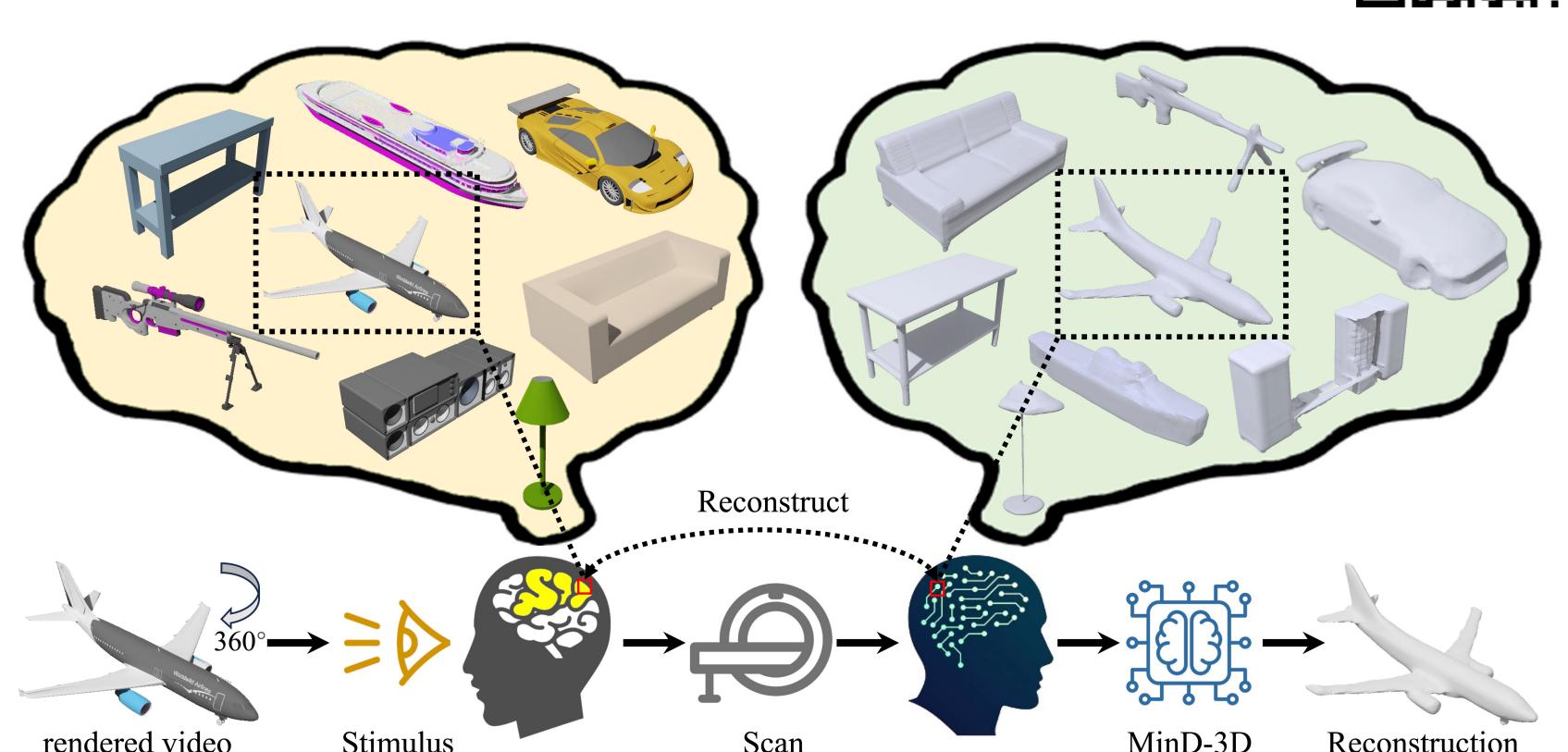
MinD-3D: Reconstruct High-quality 3D objects in Human Brain

Jianxiong Gao, Yuqian Fu, Yun Wang, Xuelin Qian, Jianfeng Feng, Yanwei Fu[†]

Fudan University

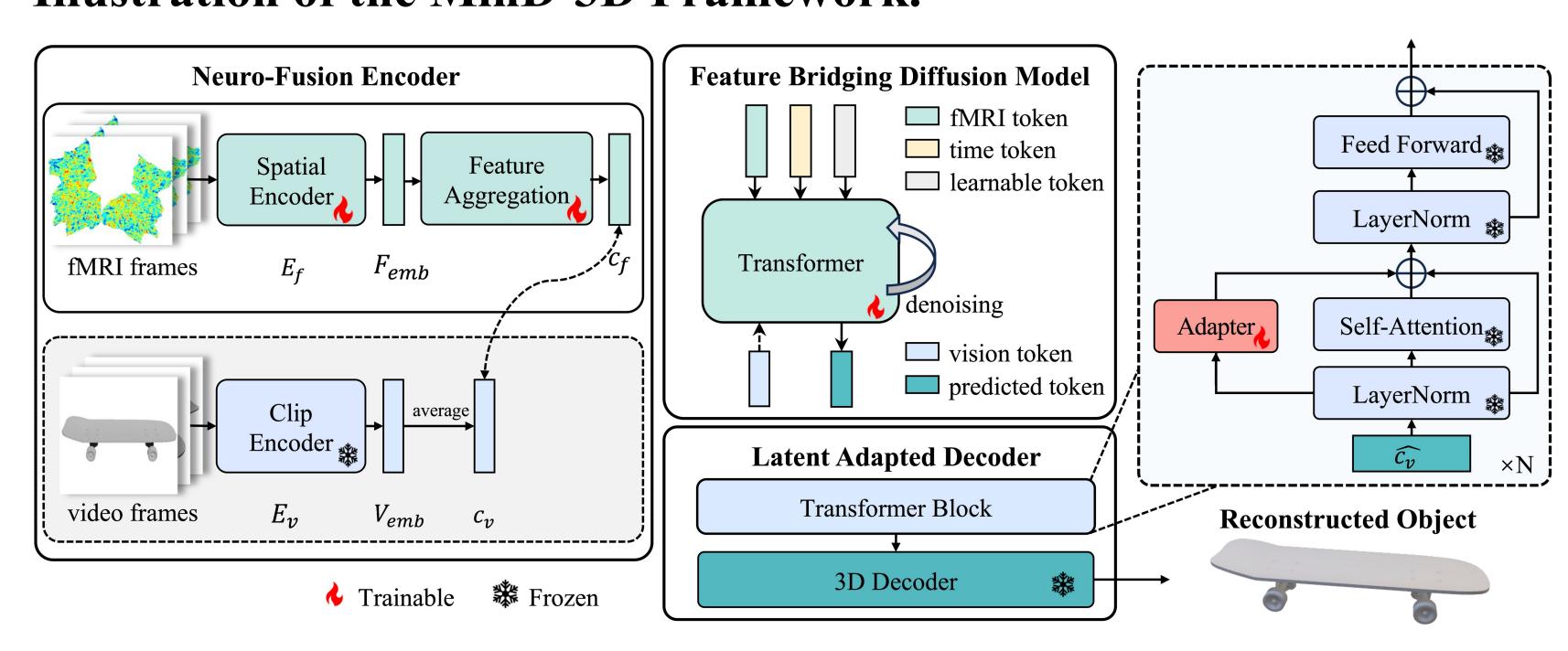
Introduction

This paper presents a novel framework MinD-3D and comprehensive dataset fMRI-Shape for 3D brain decoding. Project page: https://jianxgao.github.io/MinD-3D.



Method: MinD-3D

Illustration of the MinD-3D Framework.

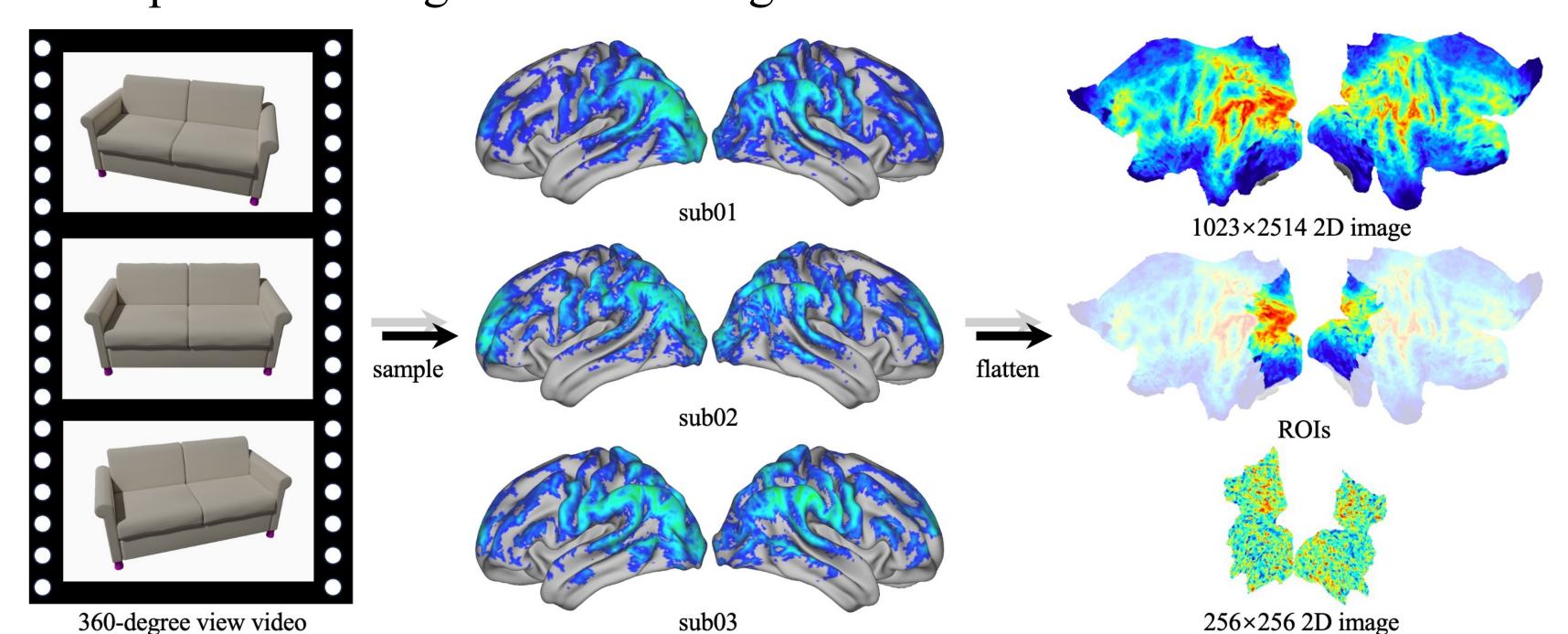


- It utilizes a pretrained encoder to extract features from fMRI frames.
- A transformer-based diffusion model is used to generate visual features based on the fMRI features.
- An adapted 3D generator is employed to create 3D object meshes conditioned on the generated visual features.

Dataset: fMRI-Shape

Data Acquisition Process

- Render 3D objects from ShapeNet into 8-second videos for participants.
- Map the fMRI signals to 2D images and select the visual ROIs.



Individual Differences in Brain Activation Patterns stimulus sub01 sub02 sub03 sub04 sub05 sub06 White the subon sub04 sub05 sub06 sub06



• It confirms significant variation across subjects, surpassing differences in object responses, posing a great challenge for OOD testing.

Details of fMRI-Shape Dataset

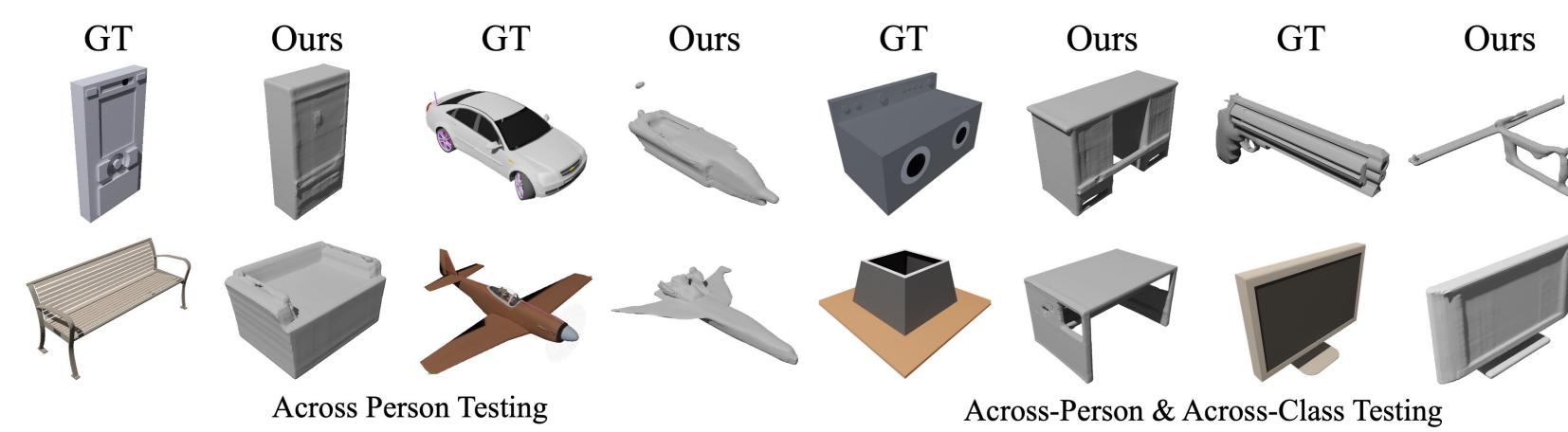
	Participant	Males/Females	Category	Objects	Frames
Core Set	8	4/4	13	1404	14040
AP Set	2	1/1	13	104	1040
APAC Set	4	2/2	55	220	2200
Total	14	7/7	55	1624	123200

Experimental Results

Performance of Our Proposed MinD-3D GT Mind-3D fMRI-PTE-3D LEA-3D GT Mind-3D fMRI-PTE-3D LEA-3D LEA-3D

Marriana	Semantic-Level			Structure-Level			
Methods	2-way	10-way↑	LPIPS↓	SSIM↑	FPD↓	$\mathrm{CD}\!\!\downarrow$	$\text{EMD} \downarrow$
LEA-3D [34]	0.787	0.371	0.527	0.562	4.229	2.291	5.347
fMRI-PTE-3D [36]	0.815	0.392	0.433	0.694	3.571	1.992	4.621
w/o Both	0.789	0.367	0.479	0.616	3.694	2.205	5.073
w/o Diffusion	0.801	0.385	0.423	0.669	3.526	2.071	4.625
w/o Contrastive	0.823	0.419	0.319	0.701	3.315	1.826	4.027
MinD-3D (full)	$\boldsymbol{0.839}$	$\boldsymbol{0.432}$	0.230	$\boldsymbol{0.734}$	3.157	1.742	3.833

Performance on Out-of-Distribution Testing



Conclusion

- We propose and, for the first time, demonstrate the feasibility of a novel task called **Recon3DMind**.
- We introduce the first large-scale fMRI-3D dataset, fMRI-Shape, with 14 participants, supporting various experiments settings.
- We present a novel framework, MinD-3D, for 3D brain decoding.