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Introduction
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Action anticipation involves predicting an action category for 
an event starting at time 𝜏𝑠 requiring analysis of a sequence 
of events from the interval [𝜏𝑠 −(𝜏𝑜 + 𝜏𝑎); 𝜏𝑠 − 𝜏𝑎], where 
𝜏𝑠 , 𝜏𝑜and 𝜏𝑎 denote the starting, observation and 
anticipation periods.

Important applications:

1. Autonomous driving

2. Wearable assistants



Problem

Action anticipation, as an extension of action recognition, is prone to future 
uncertainty and the difficulty of reasoning upon interconnected actions.

Current approaches:

1. Action recognition methods

2. Temporal modeling through LSTMs or Causal Transformers

Important aspects that are not addressed:

1. Action semantic connectivity and co-occurrence

How do we deal with it?



S-GEAR Framework

We present Semantically Guided Representation 
Learning Framework (S-GEAR) for action anticipation.

S-GEAR, inspired from fundamentals of semantic 
connectivity, uses prototypical learning to:

1. Model typical action patterns

2. Semantic relationships based on co-occurrence.



Architecture



Common Communication Space

𝑆𝑣 - Visual Space       𝑟𝑧𝑡 - Relative Representation of Visual Encoding 𝑧𝑡
𝑆𝑙 - Language Space  𝑟 ො𝑦𝑡 - Relative Representation of Language Encoding ො𝑦𝑡

Refer to main paper for more details.



Qualitative Results - Learned Representations

Refer to main paper for quantitative results and comparison with previous SOTA



Conclusions

Conclusions from our study:

• Modelling actions co-occurrence is critical for the task 
of action anticipation.

• Using common spaces to align modalities, allows S-
GEAR to learn co-occurrence from language 
representation while preserving the visual information.

• S-GEAR lacks the ability to model the order of co-
occurrence between action.
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