

Controllable Navigation Instruction Generation with Chain of Thought Prompting

Xianghao Kong¹*, Jinyu Chen¹*, Wenguan Wang^{2†}, Hang Su³, Xiaolin Hu³, Yi Yang², Si Liu^{1†} ¹ School of Artificial Intelligence, Beihang University ² Zhejiang University, ³ Tsinghua University

Problem Setting: Vision-Language Navigation

Follower

≻ Input

- Current panoramic view and position
- Instruction
- Navigable views

Output

• Select an action view from navigable views

Speaker (Our Focus)

≻ Input

• Panoramic views, positions, and action views of each step along a trajectory

Output

• Navigation instruction

Instruction: Get out of the dining room and walk into the bedroom. Wait at the window beside the bed.

Motivation

Enhancing Executability and Controllability of Instruction Generation Models

Executability

- High linguistic quality
- Clear guidance at navigational junctions
- Controllability
 - Style Control: Whether the instruction recipient is acquainted with the environment \rightarrow level of abstraction
 - **Content Control**: What type of landmarks the instruction follower focuses on
- Existing Methods: No Controllability
 - One model instance, one single style
 - Cannot specify landmarks

Solution

Controllable Navigation Instructor (C-Instructor)

Adapter Structure

• Incorporate path information into LLM

Chain-of-Thought with Landmarks Mechanism

- Better Executability: Identifying crucial landmarks before generating full instructions
- Provide <u>Content Controllability</u>: Modifying landmarks

Spatial Topology Modeling Task

• Better Executability: Incorporating spatial connectivity prediction to help understand environment layout

Style-Mixed Training Policy

- Generate instructions in various styles within a single model instance
- Provide <u>Style Controllability</u>: Prompts as differentiation

Overall Framework

Trajectory Encoder (Left)

- **Encode** each sub-view with CLIP visual encoder
- Add spatial and temporal **PE**, add action PE
- Aggregate global visual feature of each panoramic observations using ViT blocks

LLM Adapter (Right)

- Add **adapter queries** of each layer with global visual feature, then do linear projection
- Conduct **zero-initialized attention** with language feature to inject trajectory information

Chain of Thought with Landmarks

Landmark Selection

- Linguistic Landmarks: nouns in annotated instructions
- Visual Landmarks: selected according to spatial and temporal importance

Spatial Selection: Objects distinct in action view

Temporal Selection: Action leads to new scene

CoT Training and Inference

- Step 1: Identify landmarks
- Step 2: Generate full instruction

CoT Inference

prompt_i: You are given a sequence of views of a path.
Please extract critical landmarks in the path.
Landmarks : < stair, living room, coffee table >

prompt_w: You are given a sequence of views of a path in an indoor environment. Please describe the path according to the given landmarks in details for an intelligent agent to follow. <*Landmarks*>

Instruction: Go down the *stairs* and take a right. Go into the *living room*. Stop next to the *coffee table*.

Spatial Topology Modeling Task

Enhancing Spatial Perception Capability

- LLMs and visual encoders are typically trained on Internet data with **few embodied-type data**
- Understanding **spatial relationships** is essential for guiding agents
- Predict how to **return** to the previous viewpoint
 - Can be done on a random trajectory without instruction annotation
- Introduce a special token for action prediction
- Inject view information through cross attention

Comparison in Text Similarity Metrics

Assessing the Similarity between Generated Instructions and Human Annotations

4 datasets with different linguistic styles

• 3 indoor datasets, 1 outdoor dataset

SOTA performance

Methods	R2R val seen						m R2R val unseen					
	SPICE↑	BLEU-1 \uparrow	BLEU-4 \uparrow	$CIDEr\uparrow$	$\texttt{Meteor}\uparrow$	$\texttt{Rouge}\uparrow$	$SPICE\uparrow$	BLEU-1 \uparrow	BLEU-4 \uparrow	$CIDEr\uparrow$	Meteor	$\texttt{Rouge}\uparrow$
BT-speaker [13] [NeurIPS2018]	0.173	0.670	0.236	0.373	0.209	0.443	0.113	0.600	0.149	0.113	0.167	0.376
EDrop-speaker [41] [NAACL2019]	0.168	0.660	0.228	0.362	0.208	0.447	0.117	0.590	0.157	0.160	0.174	0.389
CCC-speaker [47] [CVPR2022]	0.194	0.698	0.265	0.449	0.218	0.467	0.108	0.591	0.139	0.120	0.164	0.375
Lana [49] [CVPR2023]	0.170	0.657	0.215	0.265	0.205	0.433	0.174	0.667	0.236	0.295	0.213	0.448
C-INSTRUCTOR w/o SMT	0.230	0.732	0.270	0.511	0.237	0.475	0.217	0.715	0.263	0.453	0.234	0.470
C-Instructor (Ours)	0.233	0.726	0.276	0.529	0.247	0.480	0.212	0.713	0.266	0.447	0.239	0.473

Methods		Rxl	een	RxR val unseen						
Methods	BLEU-1↑	BLEU-4↑	$\mathtt{CIDEr}\uparrow$	$\texttt{Meteor}\uparrow$	$\texttt{Rouge}\uparrow$	BLEU-1 ↑	BLEU-4 \uparrow	$\mathtt{CIDEr}\uparrow$	$\texttt{Meteor}\uparrow$	Rouge
BT-speaker [13] [NeurIPS2018]	0.514	0.188	0.026	0.204	0.365	0.566	0.211	0.024	0.208	0.372
EDrop-speaker [41] [NAACL2019]	0.595	0.197	0.047	0.213	0.378	0.568	0.184	0.038	0.205	0.370
CCC-speaker [47] [CVPR2022]	0.526	0.194	0.024	0.185	0.355	0.518	0.187	0.026	0.184	0.353
Lana [49] [CVPR2023]	0.342	0.123	0.040	0.128	0.275	0.319	0.115	0.043	0.124	0.273
C-INSTRUCTOR w/o SMT	0.683	0.233	0.081	0.243	0.381	0.667	0.224	0.080	0.236	0.379
C-INSTRUCTOR (Ours)	0.685	0.234	0.082	0.238	0.382	0.678	0.233	0.077	0.239	0.382

Methods	REVERIE val seen						REVERIE val unseen					
	SPICE↑	BLEU-1↑	BLEU-4↑	$CIDEr\uparrow$	Meteor↑	Rouge \uparrow	SPICE↑	BLEU-1↑	BLEU-4↑	$\mathtt{CIDEr}\uparrow$	$\texttt{Meteor}\uparrow$	Rouge↑
BT-speaker $[13]$ [NeurIPS2018]	0.121	0.693	0.347	0.269	0.223	0.602	0.103	0.664	0.302	0.190	0.200	0.569
EDrop-speaker [41] [NAACL2019]	0.138	0.641	0.360	0.523	0.277	0.597	0.114	0.648	0.319	0.333	0.233	0.546
CCC-speaker [47] [CVPR2022]	0.144	0.727	0.408	0.502	0.272	0.589	0.115	0.681	0.357	0.334	0.232	0.548
Lana [49] $[CVPR2023]$	0.137	0.707	0.404	0.627	0.282	0.619	0.107	0.696	0.345	0.327	0.239	0.582
C-Instructor w/o SMT	0.184	0.785	0.480	0.844	0.319	0.649	0.139	0.739	0.369	0.464	0.259	0.577
C-INSTRUCTOR (Ours)	0.182	0.775	0.459	0.805	0.311	0.647	0.141	0.754	0.419	0.545	0.267	0.591

Methods	UrbanWalk							
Methods	,	SPICE \uparrow	BLEU-1 \uparrow	BLEU-4 \uparrow	Meteor \uparrow	Rouge \uparrow		
BT-speaker [13]	[NeurIPS2018]	0.524	0.649	0.408	0.350	0.620		
EDrop-speaker [41]	[NAACL2019]	0.531	0.689	0.435	0.358	0.634		
ASSISTER [19]	[ECCV2022]	0.451	0.576	0.164	0.319	0.557		
Kefa-speaker [52]	[Arxiv2023]	0.566	0.711	0.450	0.378	0.655		
C-INSTRUCTOR	(Ours)	0.645	0.771	0.534	0.461	0.781		

Diagnostic Experiments

Comparing the Full Model with Several Ablative Designs

➤ Vanilla LLM

- Caption (BLIP) then generate (LLaMA), with fine-tuning
- > Baseline with our basic structure to inject path information

Baseline + proposed modules

Mathada		REVER	RIE val	unseen		m R2R val unseen				
Methous	BLEU-1 ↑	BLEU-4 \uparrow	$\mathtt{CIDEr}\uparrow$	$\texttt{Meteor}\uparrow$	$\texttt{Rouge}\uparrow$	BLEU-1 \uparrow	BLEU-4 \uparrow	$CIDEr\uparrow$	$\texttt{Meteor}\uparrow$	$\texttt{Rouge}\uparrow$
Vanilla LLM	0.399	0.131	0.432	0.156	0.400	0.307	0.059	0.292	0.139	0.303
Baseline	0.648	0.308	0.347	0.248	0.547	0.676	0.232	0.356	0.225	0.449
Baseline $+$ SMT	0.679	0.344	0.397	0.254	0.562	0.685	0.254	0.407	0.233	0.466
$Baseline + {\rm SMT} + {\rm STMT}$	0.737	0.402	0.490	0.258	0.590	0.689	0.262	0.445	0.228	0.479
Baseline + SMT + STMT + CoTL	0.754	0.419	0.545	0.267	0.591	0.713	0.266	0.447	0.239	0.473

Instruction Quality Analysis

Assessing the Semantic Alignment between Instructions and Trajectories

Path Guiding Proficiency

• Regenerate instructions on validation splits to guide followers

Data Augmentation

• Generate instructions on new trajectories sampled from training scenes as additional training data

Data Sourco	REVERIE val unseen						
Data Source	SR↑	$\mathtt{SPL}\uparrow$	$\texttt{RGS}\uparrow$	$\texttt{RGSPL}\uparrow$			
Original [38]	32.95	30.20	18.92	17.28			
+BT-speaker [13]	31.84	28.37	17.35	15.14			
+ EDrop-speaker [41]	30.45	27.18	18.60	16.24			
+CCC-speaker [47]	29.65	26.20	16.33	14.58			
+Lana [49]	33.05	29.76	19.14	17.20			
+C-Instructor (Ours)	34.25	31.25	19.99	18.08			

	Follower							
Instruction Generator	HAM	[T [7]	DUET [8]					
	$\mathtt{SR}\uparrow$	$\mathtt{SPL}\uparrow$	$\mathtt{SR}\uparrow$	$\mathtt{SPL}\uparrow$				
Human annotation [38]	32.95	30.20	46.98	33.73				
BT-speaker [13]	24.85	21.74	30.47	21.46				
EDrop-speaker [41]	26.19	23.55	27.89	17.00				
CCC-speaker [47]	23.29	20.69	29.74	19.55				
Lana [49]	26.84	24.38	31.39	20.44				
C-INSTRUCTOR (Ours)	31.35	29.27	43.34	30.13				

User Study

• Ask volunteers to rate the semantic alignment between instructions and trajectories

Qualitative Results

Demonstrating the Controllability of C-Instructor

R2R Style

Annotation: Walk past the sitting area and wait in the kitchen by the island.

Generation: < *couch, chairs, kitchen* > Walk straight past the *couch* and *chairs*. Stop in front of the *kitchen*.

LM. Control: < *hallway, sofa, couch, chairs, kitchen, island* > Walk down the *hallway* past the sectional *sofa* and stop by the *dining room island*.

REVERIE Style

Annotation: Go into the kitchen and clean the table nearest the couch.

Generation: < *kitchen, chair, stool* > Go to the *kitchen* and pull out the *chair* closest to the *stool*. LM. Control: < *kitchen, counter, chair, stool* > Go to the *kitchen* on level 1 and clean the *counter* with the *stools*.

Summary

Controllable Navigation Instructor (C-Instructor)

Controllability

- Style
- Content (Landmark)

High Linguistic Quality

Key Contributions

- Adapter Structure
- Chain-of-Thought with Landmarks Mechanism
- Spatial Topology Modeling Task
- Style-Mixed Training Policy

Experiments

- Text Similarity Metrics
- Follower Experiments
- User Study

to a door. Go straight in the hallway until you get to a vase. Go into that room and wait near the chair.