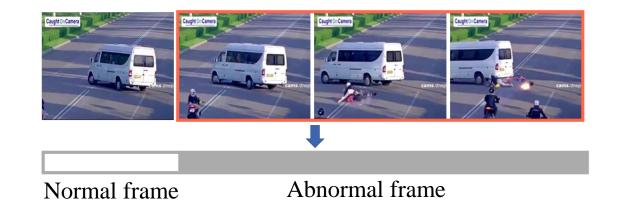


Learning Anomalies with Normality Prior for Unsupervised Video Anomaly Detection

Haoyue Shi^{[1][3]}, Le Wang^{*[1]}, Sanping Zhou^[1], Gang Hua^[2], Wei Tang^[3] ^[1]Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University ^[2]Multimodal Experiences Research Lab, Dolby Laboratories ^[3]University of Illinois Chicago

- Video Anomaly Detection (VAD)
 - Detect abnormal events in video sequences along the temporal dimension.
 - Unsupervised VAD(UAVD) aims to detect abnormal events without any annotations.



> Application Scenario

Intelligent surveillance

Road accident warning

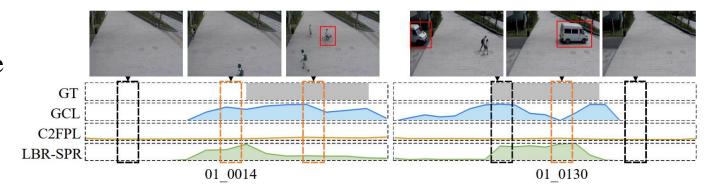
Crime detecting

Current UVAD methods

• Recent methods are data-driven, performing unsupervised learning by identifying abnormal patterns in videos.

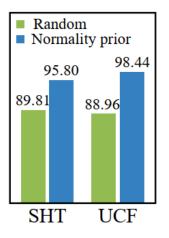
> Limitation

• These methods heavily rely on the feature representation and data distribution, often struggling to capture less salient anomalies.



- Learning Anomalies with Prior
 - Our idea is to leverage *data-irrelevant prior* knowledge about normal and abnormal events to aid in identifying anomalies.

- What is good prior knowledge for UVAD?
 - It should be both **informative** and of **high quality**.
 - We introduce **a normality prior**: the start and end of a video are mostly normal.
 - Using **our normality prior** to select normal snippets is **significantly more accurate** than random selection.
- How should the prior knowledge be used?
 - Direct comparison: normal frames can be easily mislabled.
 - We propose **Normality Propagation** to propagate normal information based on temporal and semantic relations of snippets.



Contributions of our method

Contribution1:

Unlike previous data-driven methods, we propose to use the **data-irrelevant normality prior** to identify abnormal events. To the best of our knowledge, **such prior has never been studied before in the area of UVAD.**

Contribution2:

We introduce **normality propagation** to effectively propagate the normality prior to unlabeled snippets for pseudo label generation.

Contribution3:

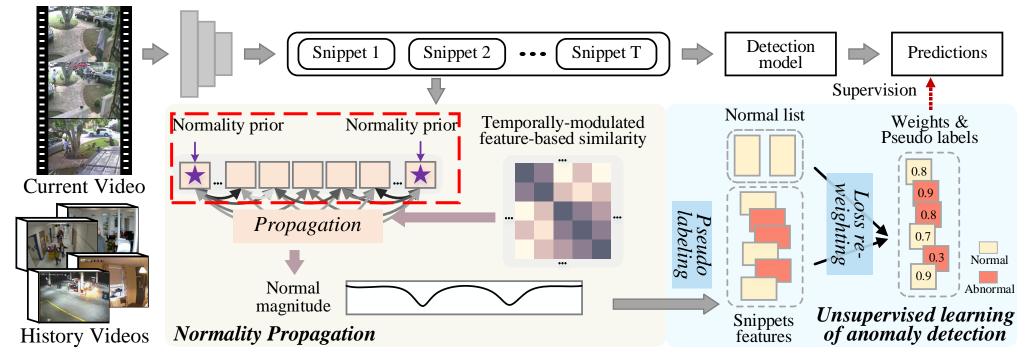
We perform **unsupervised learning of abnormal detection** based on **propagated labels** and **a new loss re-weighting method**. They are complementary to normality propagation and mitigate the negative impact of incorrectly labels.

Extensive experiments on ShanghaiTech and UCF-Crime demonstrate the effectiveness of the proposed method.

Method

EUROPEAN CONFERENCE ON COMPUTER VISION

> Overview



- We first use the **normality prior** to specify that the start and end of a video are normal.
- Then our **normality propagation** propagates the normal information to estimate normal magnitudes.
- After that, We perform **unsupervised learning of abnormal detection** based on the **propagated labels** and a **new loss re-weighting method**.

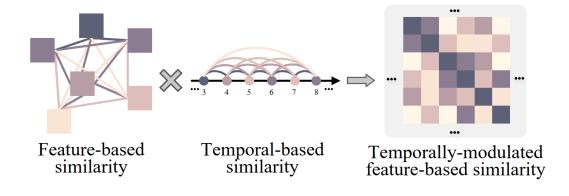
Method

> Normality Propagation

• It iterates the propagation below until convergence.

$$\mathbf{z}(n+1) = \alpha \mathbf{S}\mathbf{z}(n) + (1-\alpha)\mathbf{y}$$

y: *label vector*, **S***: similarity matrix*, **z***:* normal magnitudes.



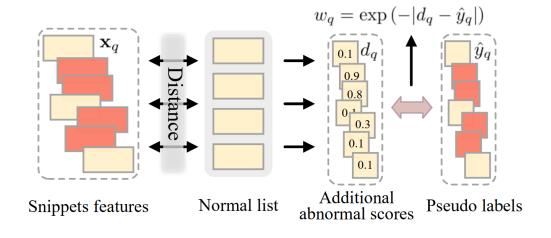
• We contrast **temporally-modulated feature-based similarity matrix** by computing the snippets' **feature space similarities** and then modulating them by their respective **temporal positions**.

Method

Unsupervised Learning of Abnormal Detection

• Pseudo Labeling:

Video-level pseudo labels are generated first, and then snippet-level pseudo labels are generated.

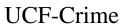


• Loss re-weighting strategy:

The loss weight of a snippet is measured by the **discrepancy** between its **pseudo label** and its **additional normal-based anomaly score**.

Dataset

ShanghaiTech



> Evaluation Metric

• We use the **frame-level area under the ROC curve** (AUC) for evaluation and comparisons.

Experiments

EUROPEAN CONFERENCE ON COMPUTER VISION

Comparison with the State-of-the-Art

- We establish a new **state-of-the-art** on two datasets with ResNext as the backbone.
- Our method achieves better performance than one-class methods.
- As no annotations are provided, we still perform inferior to weakly-supervised methods.

	Method	Features	ShanghaiTech	UCF-Crime
Weakly-supervised	Sultani et al. 33	C3D	-	75.41
	CLAWS 49	C3D	89.67	83.03
	CLAWS Net+ 50	C3D	90.12	83.37
	MIST 5	C3D	93.13	81.40
	RTFM 36	C3D	91.51	83.28
	MIST 5	I3D	94.83	82.30
	RTFM 36	I3D	97.21	84.30
	Zhang et al. 51	I3D	-	86.22
	CLAWS [49]	ResNext	-	82.61
	CLAWS $Net + 50$	ResNext	91.46	84.16
	Zaheer $et \ al.$ 47	ResNext	86.21	79.84
One-class	Lu et al. 23	-	68.00	65.51
	BODS 40	I3D	-	68.26
	GODS 40	I3D	-	70.46
	OGNet 48	ResNext	69.90	69.47
	Zaheer $et al.$ 47	ResNext	79.62	74.20
Unsupervised	DyAnNet 35	I3D	-	79.76
	C2FPL 1	I3D	-	80.65
	Ours	I3D	88.32	80.02
	Kim et al. 15	ResNext	56.47	52.00
	LBR-SPR 46	ResNext	77.12	57.18
	GCL 47	ResNext	78.93	71.04
	Tur $et al$. 37	ResNext	68.88	62.91
	Tur et al. 38	ResNext	66.36	63.52
	C2FPL 1	ResNext	67.36	74.71
	Ours	ResNext	86.46	76.64

Experiments

> Validation of Normality Prior

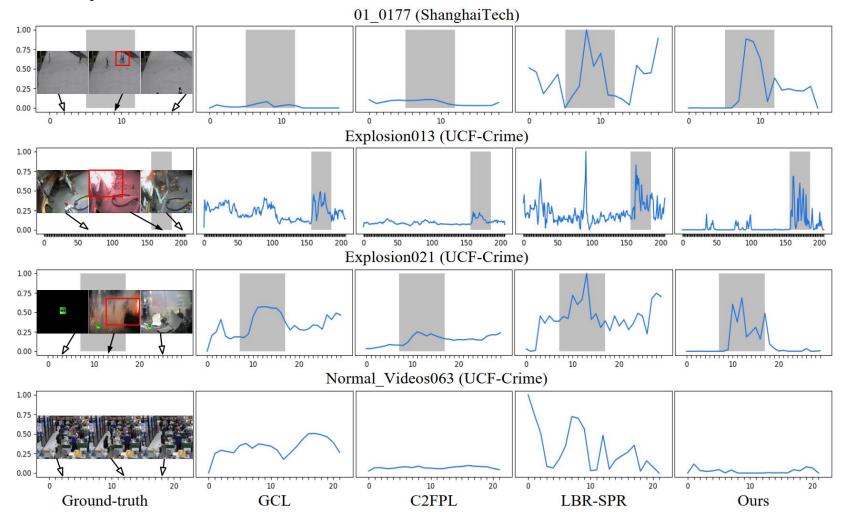
	ShanghaiTech			UCF-Crime		
	Precision	Recall	TestAUC	Precision	Recall	TestAUC
Random	17.90	29.27	81.69	13.28	42.41	60.33
Data-driven Prior	19.74	24.64	83.59	15.19	48.23	68.51
Normality Prior	34.39	42.92	85.96	20.37	54.28	75.99

Ablation Study of Normality Propagation

Pairwise Similarity ShanghaiTech UCF-Crime							
Direct Comparison	-	72.33	71.22				
Normality Propagation	$\begin{array}{c} T\\ F\\ T\&F \end{array}$	79.62 <u>79.73</u> 85.96	57.99 <u>63</u> .01 75.99				

Experiments

> Qualitative Analysis



Conclusion

> Conclusion

- We propose to learn anomalies with **normality prior** for video anomaly detection.
- We perform unsupervised learning of abnormal detection based on proposed **normality propagation** and a **new loss re-weighting method**.

Limitation

- As our method is build on the semantic consistency, it performs weak in a video with multiple scenes.
- In the future, we will explore combining with other methods that focus on **detecting anomalies in multiple scenes**.