

EUROPEAN CONFERENCE ON COMPUTER VISIO

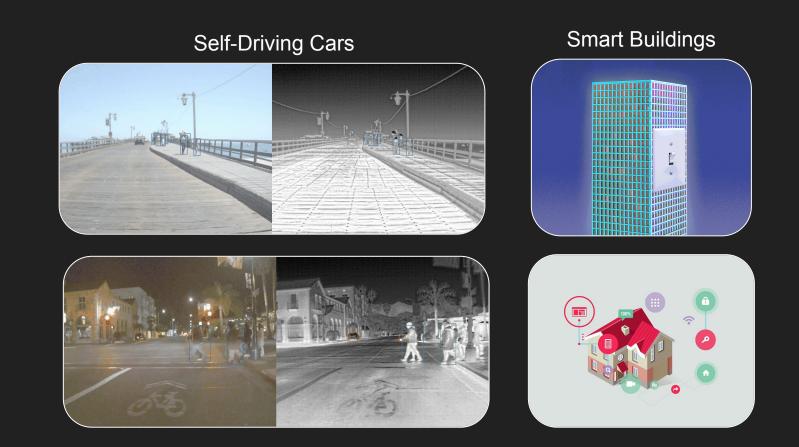
MILAN O

Modality Translation for Object Detection Adaptation Without Forgetting Prior Knowledge

Heitor R. Medeiros, Masih A., Fidel A. G. Peña, David Latortue, Eric Granger, Marco Pedersoli LIVIA, Dept. of Systems Engineering, ETS Montreal, Canada

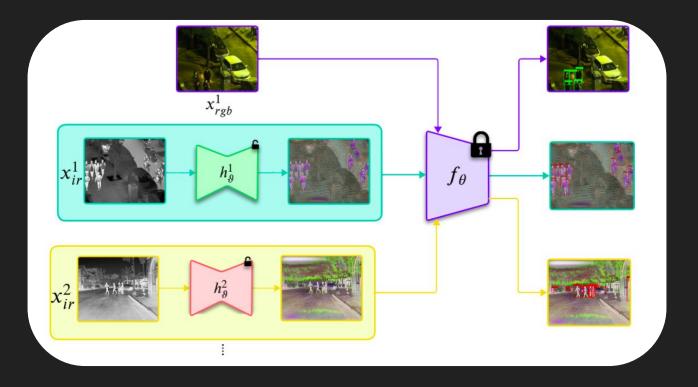
1. Background and Motivation

Object Detection RGB and IR


• RGB and IR can contain complementary information that can be used to improve object detection.

IR sensors are better than RGB for people detection in low-light conditions.

Infrared (IR)


Visible (RGB)

[1] Qingyun, Fang, Han Dapeng, and Wang Zhaokui. "Cross-Modality Fusion Transformer for Multispectral Object Detection." arXiv preprint arXiv:2111.00273 (2021).
[2] ADVIDS. "20 Smart and Intelligent building solutions Video Marketing Examples", accessed 21 March 2022, https://blog.advids.co/20-smart-and-intelligent-building-solutions-video-marketing-examples/.
[3] AXIOS, Illustration: Annelise Capossela/Axios, accessed 21 March 2022. https://www.axios.com/coronavirus-smart-city-stalled-projects-852731df-072f-45bf-8218-2f5def57c8d4.html.

2. ModTr

Proposed Model: ModTr

ModTr Loss

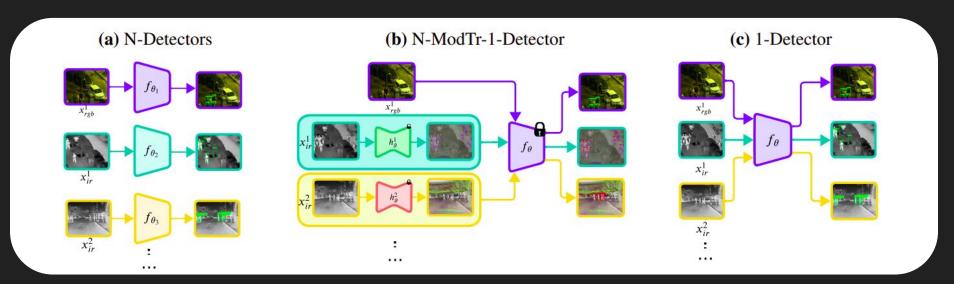
$$\mathcal{L}_{det}(\theta) = \frac{1}{|\mathcal{D}|} \sum_{(x,\mathbf{y})\in\mathcal{D}} \mathcal{L}_{det}[f_{\theta}(x),\mathcal{Y}].$$

$$\left[\mathcal{L}_{\text{ModTr}}(x,\mathcal{Y};\vartheta) = \mathcal{L}_{det}[f_{\theta}\left(\Phi(h_{\vartheta}^{d}(x),x)\right),\mathcal{Y}]\right]$$

3. Results

Comparison with Translation Approaches

5			Test Set IR (Dataset: LLVIP)		
Image translation	RGB	Box	FCOS	RetinaNet	Faster R-CNN
Histogram Equal. [15]			31.69 ± 0.00	33.16 ± 0.00	38.33 ± 0.02
CycleGAN [53]	\checkmark		23.85 ± 0.76	23.34 ± 0.53	26.54 ± 1.20
CUT [39]	\checkmark		14.30 ± 2.25	13.12 ± 2.07	14.78 ± 1.82
FastCUT [39]	\checkmark		19.39 ± 1.52	18.11 ± 0.79	22.91 ± 1.68
HalluciDet [31]	\checkmark	\checkmark	28.00 ± 0.92	19.95 ± 2.01	57.78 ± 0.97
$ModTr_{\odot}$ (ours)		\checkmark	57.63 ± 0.66	54.83 ± 0.61	57.97 ± 0.85
			Test Set IR (Dataset: FLIR)		
Image translation	RGB	Box	FCOS	RetinaNet	Faster R-CNN
Histogram Equal. [15]			22.76 ± 0.00	23.06 ± 0.00	24.61 ± 0.01
CycleGAN [53]	\checkmark		23.92 ± 0.97	23.71 ± 0.70	26.85 ± 1.23
CUT [39]	\checkmark		18.16 ± 0.75	17.84 ± 0.75	20.29 ± 0.48
FastCUT [39]	\checkmark		24.02 ± 2.37	22.00 ± 2.73	26.68 ± 2.59
HalluciDet [31]	\checkmark	\checkmark	23.74 ± 2.09	22.29 ± 0.45	29.91 ± 1.18
$ModTr_{\odot}$ (ours)		\checkmark	35.49 ± 0.94	34.27 ± 0.27	37.21 ± 0.46


Table 1. IR object detection AP performance with different translation methods.

Translation vs. Fine-tuning

	Test Set IR (Dataset: LLVIP)					
Method	FCOS	RetinaNet	Faster R-CNN			
Fine-Tuning (FT)	57.37 ± 2.19	53.79 ± 1.79	59.62 ± 1.23			
FT Head	49.11 ± 0.70	44.00 ± 0.28	59.33 ± 2.17			
LoRA [19]	47.72 ± 0.58	-	54.83 ± 1.30			
$ModTr_{\odot}$ (ours)	57.63 ± 0.66	54.83 ± 0.61	57.97 ± 0.85			
	Test Set IR (Dataset: FLIR)					
Method	FCOS	RetinaNet	Faster R-CNN			
Fine-Tuning (FT)	27.97 ± 0.59	28.46 ± 0.50	30.93 ± 0.46			
FT Head	27.40 ± 0.12	26.78 ± 0.70	33.53 ± 0.36			
LoRA [19]	-	-	29.44 ± 0.61			
$ModTr_{\odot}$ (ours)	35.49 ± 0.94	34.27 ± 0.27	37.21 ± 0.46			

Table 2. AP performance benchmark for different OD fine-tuning strategies.

Knowledge Preservation through Input Modality Translation

Knowledge Preservation through Input Modality Translation

Detector	Dataset	N-Detectors	1-Detector	N-ModTr-1-Det.
FCOS	LLVIP FLIR COCO	57.37 ± 2.19 27.97 ± 0.59 38.41 ± 0.00	58.55 ± 0.89 26.70 ± 0.48 00.33 ± 0.04	57.63 ± 0.66 35.49 ± 0.94 38.41 ± 0.00
	AVG.	41.25 ± 0.92	28.52 ± 0.47	43.84 ± 0.53
RetinaNet	LLVIP FLIR COCO	53.79 ± 1.79 28.46 ± 0.50 35.48 ± 0.00	53.26 ± 3.02 25.19 ± 0.72 00.29 ± 0.01	54.83 ± 0.61 34.27 ± 0.27 35.48 ± 0.00
	AVG.	39.24 ± 0.76	26.24 ± 1.28	41.52 ± 0.29
Faster R-CNN	LLVIP FLIR COCO	59.62 ± 1.23 30.93 ± 0.46 39.78 ± 0.00	62.50 ± 1.29 28.90 ± 0.33 00.40 ± 0.00	57.97 ± 0.85 37.21 ± 0.46 39.78 ± 0.00
	AVG.	43.44 ± 0.56	30.60 ± 0.54	44.98 ± 0.43

Table 3. Detection performance (AP) of knowledge-preserving techniques.

Qualitative Results

4. Conclusion

Conclusion

• In this work, we present a novel ModTr method for adapting ODs without changing their parameters.

• ModTr benefits from preserving the full knowledge of the detector, which opens the possibility of using the translation network as a node to change the modality for an unaltered detector.

EUROPEAN CONFERENCE ON COMPUTER VISIO

MILAN O

ILLS

International Laboratory

on Learning Systems

Heitor R. Medeiros, Masih A., Fidel A. G. Peña, David Latortue, Eric Granger, Marco Pedersoli LIVIA, Dept. of Systems Engineering, ETS Montreal, Canada

EUROPEAN CONFERENCE ON COMPUTER VISIO

MILAN O

Modality Translation for Object Detection Adaptation Without Forgetting Prior Knowledge

Heitor R. Medeiros, Masih A., Fidel A. G. Peña, David Latortue, Eric Granger, Marco Pedersoli LIVIA, Dept. of Systems Engineering, ETS Montreal, Canada

