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● A way to mitigate the decrease in accuracy when the distributions of the 
source and target data are different (i.e., covariate shift)

○ Source data (labeled)
■ Used for training
■ Available during adaptation

○ Target data (unlabeled)
■ Used after deployment
■ Different “style” than source

What is domain adaptation
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● In some cases, the source data is unavailable after the source model is 
deployed (e.g., for privacy issues)

What is source-free domain adaptation (SFDA)

01 What is SFDA-CDS ECCV2024

Source 
feature 

extractor

C
la

ssifier

Unlabeled target data

Pseudolabels

Labeled source data

class ID

Pr
ob

a
bi

lit
y

Covariate
Shift

Unavailable
during

adaptation

Labels

Labels

○ Given the lack of labels, 
pseudolabels are used instead



5

● Pseudolabels are normally calculated via nearest neighbors
○ Nearby samples in the feature space refine the predictions

What is source-free domain adaptation (SFDA)
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● SFDA methods assume matching class distributions among domains

What is source-free domain adaptation under class distribution shift (SFDA-CDS)
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● However, in real scenarios, the number of samples per class differs between 
source and target (i.e., class distribution shift)

● This causes a drop in performance due to the majority/minority bias

What is source-free domain adaptation under class distribution shift (SFDA-CDS)
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● This difficult scenario presents a number of problems

○ Standard CDS mitigation methods require labels

○ However, we only have a CDS-biased source model and label-less target data

● → This makes estimating the CDS impossible

○ Majority and minority classes cannot be determined

○ Misclassifications may be due to both either the bias of the source model or the 
target data

What is source-free domain adaptation under class distribution shift (SFDA-CDS)
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Our proposal:
Robust nearest neighbors

for SFDA-CDS
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● The nearest neighbors algorithm is reliable without CDS

The effect of CDS in the nearest neighbors algorithm
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● However, it is sensitive to the majority-minority bias in CDS
○ But in this setting bias cannot be eliminated

● Leveraging “generic” features free of the source bias for a “second opinion”

The effect of CDS in the nearest neighbors algorithm
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● Finding common nearest neighbors between the source and the 
generic feature spaces

Proposed method: Robust nearest neighbors
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● Since our framework does not require additional training, it provides 
several advantages

○ Generic features are only calculated once at the beginning (no extra cost)

○ It can also be applied to the setting of test-time adaptation (TTA)

■ Running on evaluation mode (no weight update)

Proposed method: Robust nearest neighbors
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● Our robust nearest neighbors outperform previous methods in 
both SFDA and TTA tasks under CDS

Main results
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● Nearest neighbors used in SFDA pseudolabeling is sensitive to CDS: 
Minority target samples are misclassified as majority source classes

● We proposed a method with no additional training cost to calculate 
robust nearest neighbors via features free from the source bias

● Our robust nearest neighbors outperform previous methods in both SFDA 
and TTA tasks under CDS

Conclusions
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