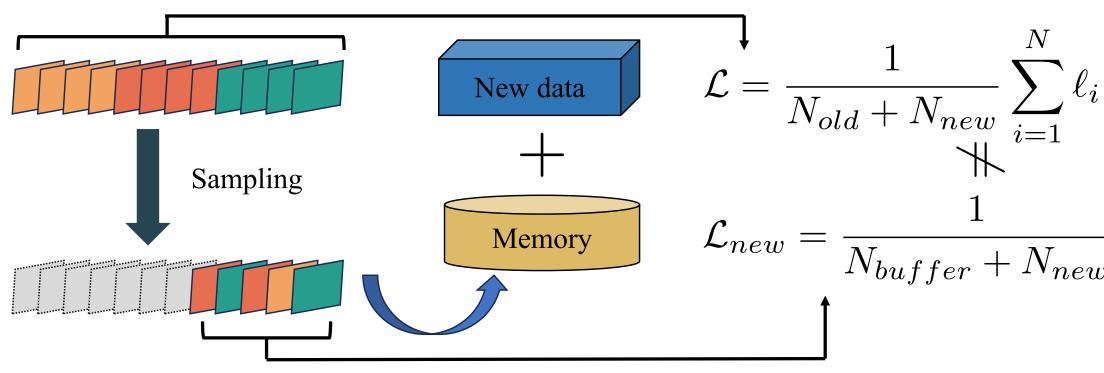


Motivation:

- The scarcity of old data can create an imbalance between the number of new and old tasks, disrupting the retention of knowledge from the old tasks during the learning process of new tasks.
- > During the continual learning process, each time old task data is sampled, some unsampled data is discarded, which introduces bias into the model's estimation of the old task distribution.



Methods:

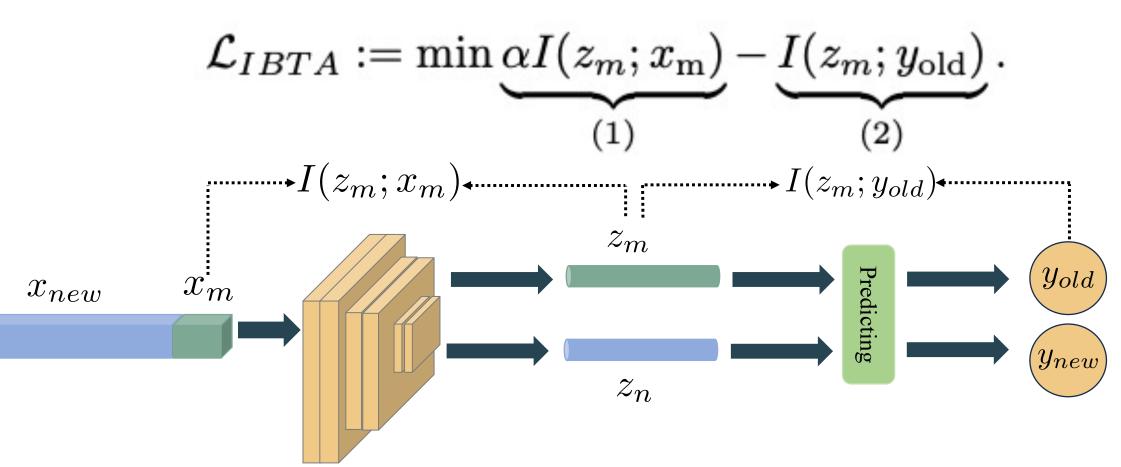
- \succ During the update process for new tasks, we introduced a constraint in the learning of buffered data. This constraint encourages the model to learn task-agnostic features associated with old tasks, effectively preventing interference from new tasks.
- After completing the learning of previous tasks, this module models the information of unsampled data, which cannot be directly trained. Our method decouples the features of unsampled data from those of sampled data, enabling the model to leverage the relationship between the two data types to estimate the surrogate influence of unsampled data.

Information Bottleneck Based Data Correction in Continual Learning

Shuai Chen, Mingyi Zhang, Junge Zhang, and Kaiqi Huang CRISE, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences

Information Bottleneck Task Against Constraints:

 \succ This module aims to maximize the mutual information between the sampled data features z_m and the buffered dataset x_m to effectively compress information. Furthermore, z_m must accurately predict the labels y_{old} to ensure class distinction, with a weighted parameter α balancing contributions in the objective function.

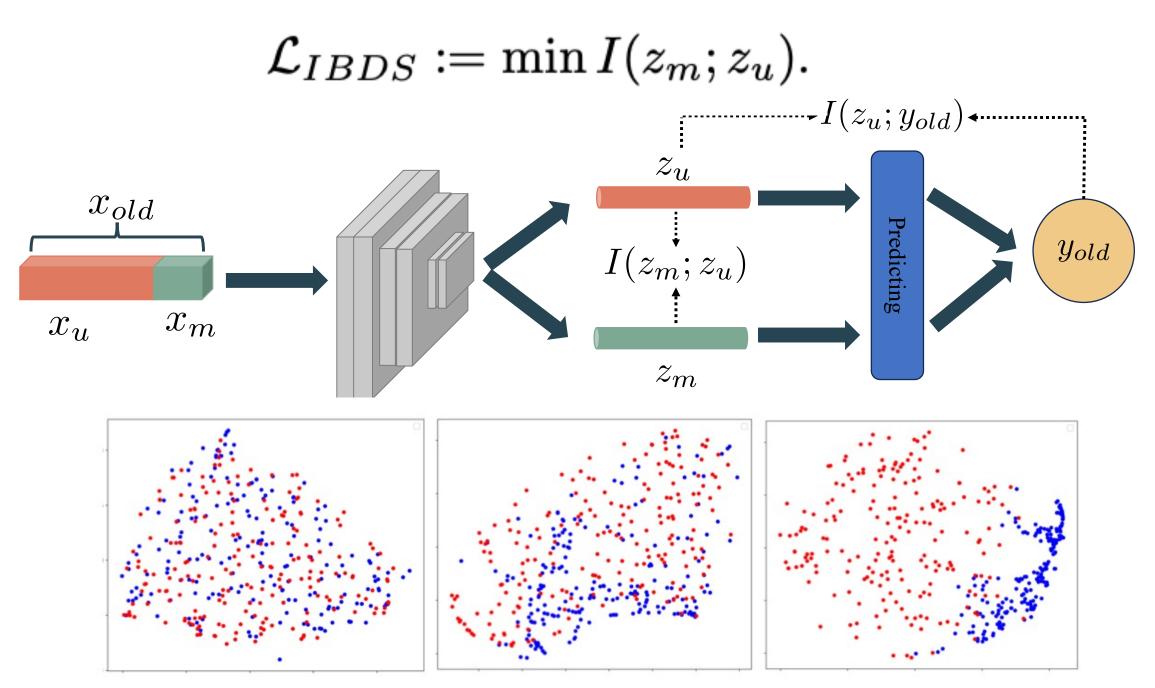


$$\ell_i(\hat{Y}, Y)$$

$$\frac{1}{N_{new}} \sum_{i=1}^{N_{n}} \ell_i(\hat{Y}, Y)$$

Information Bottleneck Unsampled Data Surrogate:

This module aims to model information from unsampled data. The method decouples features of unsampled data x_{μ} from those of sampled data x_m after completing the learning of prior tasks. By optimizing this formula, we get the surrogate expression of the unsampled data z_{μ} .



Initialization

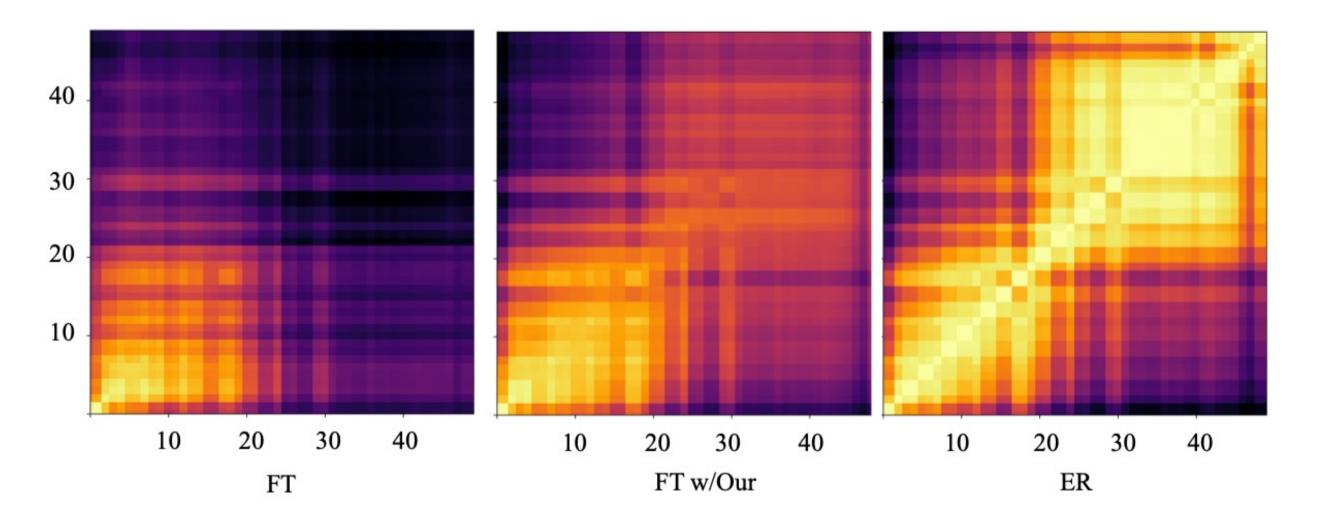
Epoch = 50

Results:

approaches..

Method	Split CIFAR-10 92.38 19.67			Split CIFAR-100 73.29 9.29			Split ImageNet-100 80.23 8.68			Split miniImageNet 53.55 9.52		
Joint												
\mathbf{FT}												
Buffer size	100	200	500	200	500	2000	200	500	2000	1000	2000	5000
ER	36.39	44.79	57.74	14.35	19.66	36.76	13.63	18.37	34.25	8.37	16.49	24.17
$+ \mathrm{IBCL}$	45.43	51.91	63.12	23.98	28.32	42.01	22.72	28.93	43.11	14.79	22.72	27.69
ER-ACE	53.90	63.41	70.53	26.28	36.48	48.41	24.23	37.12	49.55	17.95	22.60	27.92
$+ \mathrm{IBCL}$	63.85	70.97	74.82	32.12	40.94	51.89	30.72	41.81	52.62	24.77	27.63	31.02
DER++	57.65	64.88	72.70	25.11	37.13	52.08	26.50	43.65	58.05	18.02	23.44	30.43
$+ \mathrm{IBCL}$	66.41	72.52	76.61	33.82	44.21	54.89	32.63	46.57	59.92	27.72	31.41	35.79
X-DER	59.29	65.19	68.10	35.34	44.62	54.44	33.21	46.72	55.23	25.24	26.38	29.91
$+ \mathrm{IBCL}$	67.91	73.82	74.14	43.86	48.72	55.91	43.25	49.62	56.59	29.90	30.21	32.66

Method	Spli	t CIFAI	R-10	\mathbf{Split}	CIFAF	R-100	Split miniImageNet			
Buffer size	100	200	500	200	500	2000	1000	2000	5000	
ER-ACE	53.90	63.41	70.53	26.28	36.48	48.41	17.95	22.60	27.92	
$+ \mathrm{sSGD}$	56.26	64.73	71.45	28.07	39.59	49.70	18.11	22.43	24.12	
+ oEwC	52.36	61.09	68.70	24.93	35.06	45.59	19.04	24.32	29.46	
+ oLAP	52.76	63.19	70.32	26.42	36.58	47.66	18.34	23.19	28.77	
+ OCM	57.18	64.65	70.86	28.18	37.74	49.03	20.32	24.32	28.57	
+ LiDER	56.08	65.32	71.75	27.94	38.43	50.32	19.69	24.13	30.00	
+ DualHSIC	60.52	68.08	73.78	29.08	38.94	50.55	22.33	25.41	30.12	
+ Our	63.85	70.97	74.82	32.12	40.94	51.89	24.77	27.63	31.02	
DER++	57.65	64.88	72.70	25.11	37.13	52.08	18.02	23.44	30.43	
+ sSGD	55.81	64.44	72.05	24.76	38.48	50.74	16.31	19.29	24.24	
+ oEwC	55.78	63.02	71.64	24.51	35.22	51.53	18.87	24.53	31.91	
+ oLAP	54.86	62.54	71.38	23.26	34.48	50.80	18.91	25.02	32.78	
+ OCM	59.25	65.81	73.53	27.46	38.94	52.25	20.93	24.75	31.16	
+ LiDER	58.43	66.02	73.39	27.32	39.25	53.27	21.58	28.33	35.04	
+ DualHSIC	64.98	70.28	75.94	31.46	41.86	53.53	24.78	29.37	34.98	
+ Our	66.41	72.52	76.61	33.82	44.21	54.89	27.72	31.41	35.79	



AN CONFERENCE ON COMPUTER VISION

MILANO 2024

> Our method, as a plug-and-play module, can enhance the performance of existing replay-based continual learning