

EUROPEAN CONFERENCE ON COMPUTER VISION

Parrot Captions Teach CLIP to Spot Text

Yiqi Lin^{1,2*}, Conghui He^{1*†}, Alex Jinpeng Wang^{2*}, Bin Wang^{1*}, Weijia Li³, Mike Zheng Shou²

• Contrastive Language-Image Pre-Training (CLIP)

Learning transferable visual models from natural language supervision. Radford et al. In ICML'21

• Emergent Abilities in CLIP

Activation Score between Text Image and Pure Image

Synthetic Text as Visual Prompt

Zero-Shot Classification [Radford et al. ICML'21] Red Circle [Shtedritski et al. ICCV'23]

What enables this ability?

• Let's Look at Some Data!

Top5% CLIP Score in LAION-2B

- 1). Year of Yes: How to Dance It Out, Stand In the Sun and Be Your Own Person by Shonda Rhimes.
- 2). National Association of Student Financial Aid Administrators Presents 2015 NASFAA What You Need to Know About Financial Aid.
- 3). Kids Again (feat. Amy Allen) by Artist Vs Poet.
- 4). Modoc: The True Story of the Greatest Elephant That Ever Lived, Ralph Helfer.
- 5). Everton Mints 150g Jar.

Parrot captions

> Does CLIP Simply Parroting Text in Images?

LAION-5B: An open large-scale dataset for training next generation image-text models. Schuhmann, et al. NeurIPS' 22

- Profiling LAION-2B Data
 - Divide LAION 2B into 4000 clusters.
 - Top CLIP score samples from 50 clusters.

Posters, Book Covers, Advertisements, and even Slides!

• Profiling LAION-2B Data

- ➤ 54.6% of images contain embedded text.
- > 33.4% of captions have words that overlap with embedded text.

NOTE: LAION-2B dataset collection uses OpenAI's CLIP score > 0.28 as filtering!

- Inspecting Pre-Trained CLIP Models
 - Text Removal by inpainting.
 - CLIP score difference before and after Text Removal.

- ➤ Images with embedded text usually get higher CLIP scores.
- Embedded text can dominate the CLIP score measurement.

Inspecting Pre-Trained CLIP Models ۲ CLIP Score "Architectural" Architectural CLIP scores of synthetic single-word images. ٠ 0.6 Open CLIP CLIP Image-Text Similarity Scores 8 0 0 0.1 2 3 5 4 6 7 8 9 Word Length

> OpenCLIP (LAION-2B) model has a stronger text spotting ability than OpenAI's CLIP (WIT 400M).

• Training on Embedded Text Curated Data

- RSA: CLIP Score(Raw Image) CLIP Score(Text Removal Image).
- Evaluate the Zero-shot DataComp benchmark and Synthetic Image CLIP score.

Data (3M)	Model	$Avg.S(\bullet)$	IN	Ret.	Avg.
RSA < 0.0	RN50	0.319	0.181	0.220	0.239
$\mathrm{RSA} \geq 0.0$	RN50	0.339	0.126	0.180	0.215
$\mathrm{RSA} \geq 0.1$	RN50	0.351	0.041	0.123	0.148
$\mathrm{RSA} \geq 0.2$	RN50	0.360	0.017	0.094	0.109
$\mathrm{RSA} \geq 0.3$	RN50	0.376	0.009	0.075	0.097
$\overline{\text{RSA}} < 0.0$	ViT-B	0.319	0.123	0.159	0.198
$\mathrm{RSA} \geq 0.0$	ViT-B	0.339	0.079	0.129	0.185
$\mathrm{RSA} \geq 0.1$	ViT-B	0.351	0.031	0.103	0.134
$\mathrm{RSA} \geq 0.2$	ViT-B	0.360	0.012	0.080	0.103
$RSA \ge 0.3$	ViT-B	0.376	0.006	0.070	0.096

- > Images with embedded text (parrot captions) generally **reduce** dataset quality.
- The model learns stronger text spotting ability with more biased data without learning vision-language semantics.

- Training on Embedded Text Curated Data
 - Finetuning pre-trained BLIP on downstream general and text-orient tasks(gray color).

BLIP Data (2M)	Visual Question Answering (Acc)			Image Captioning (CIDEr)		Text-to-Image Retrieval (R@1)		Image-to-Text Retrieval (R@1)	
Data (SMI)	VQAv2	TextVQA	ST-VQA	COCO	$\mathbf{TextCaps}$	COCO	TextCaps	COCO	$\mathbf{TextCaps}$
RSA < 0.0	70.79	14.16	9.64	115.7	44.9	48.25	36.85	64.72	54.7
$RSA \ge 0.0$	70.03	18.76	11.81	111.9	84.5	46.25	68.61	62.92	81.23
$\mathrm{RSA} \ge 0.1$	68.14	19.48	13.33	105.6	96.1	39.96	68.13	54.64	79.37
$\mathrm{RSA} \ge 0.2$	66.01	21.06	11.85	98.7	94.4	33.03	64.17	47.12	75.33
$\mathrm{RSA} \geq 0.3$	64.20	18.44	12.04	95.26	91.1	26.64	60.11	37.3	70.24

> Parrot captions can benefit the text-orient downstream tasks while requiring careful data mixing trade-off.

Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. Li et al. In: ICML'22

• Takeaways

- LAION-2B dataset has a significant bias towards text spotting.
- Released CLIP models exhibit a strong text spotting bias, which makes CLIP-filtered datasets inherently biased.
- CLIP models can easily learn text spotting ability while failing to connect the vision-language semantics.

Paper: <u>https://arxiv.org/pdf/2312.14232</u> Project: <u>https://linyq17.github.io/CLIP-Parrot-Bias/</u>