

Towards Open-ended Visual Quality Comparison

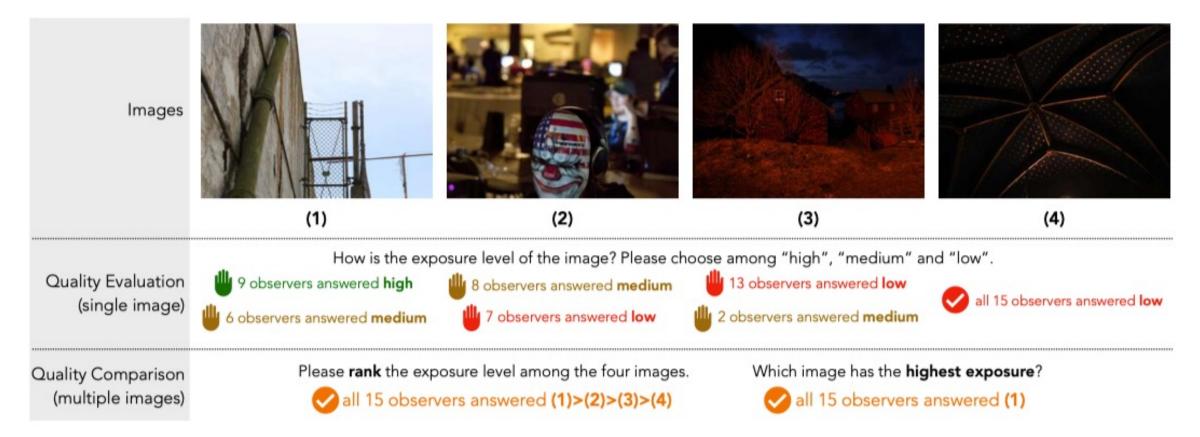
HaoningWu^{*1}, Hanwei Zhu^{*2}, Zicheng Zhang^{*3}, Erli Zhang¹, Chaofeng Chen¹, Liang Liao¹, Chunyi Li³, Annan Wang¹, Wenxiu Sun⁴, Qiong Yan⁴, Xiaohong Liu³, Guangtao Zhai³, Shiqi Wang², Weisi Lin¹

> ¹Nanyang Technological University, ²City University of Hong Kong, ³Shanghai Jiao Tong University, ⁴Sensetime Research (**Equal Contribution*)

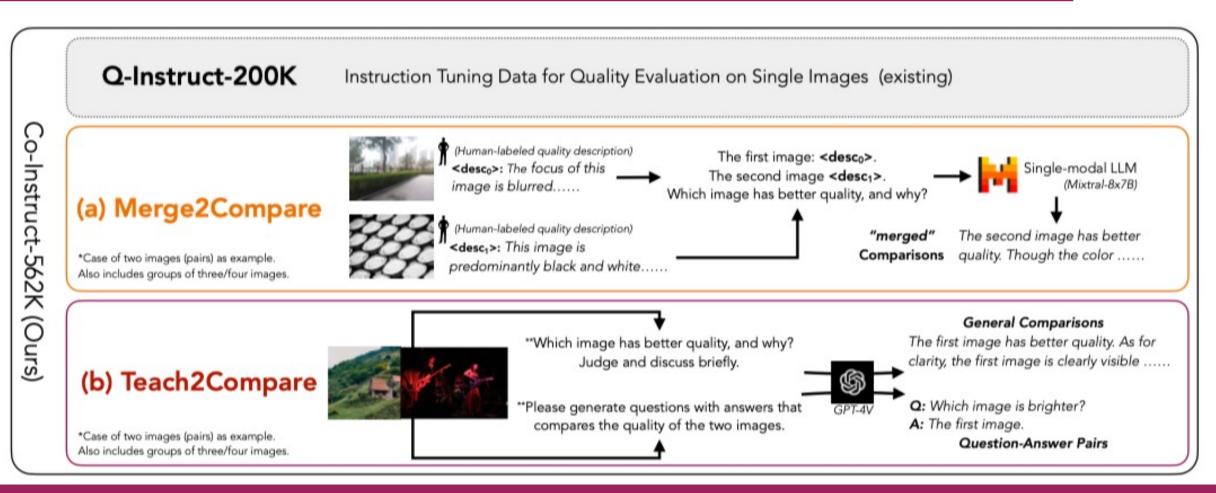
Project Page

Motivation

• Visual Quality Comparison



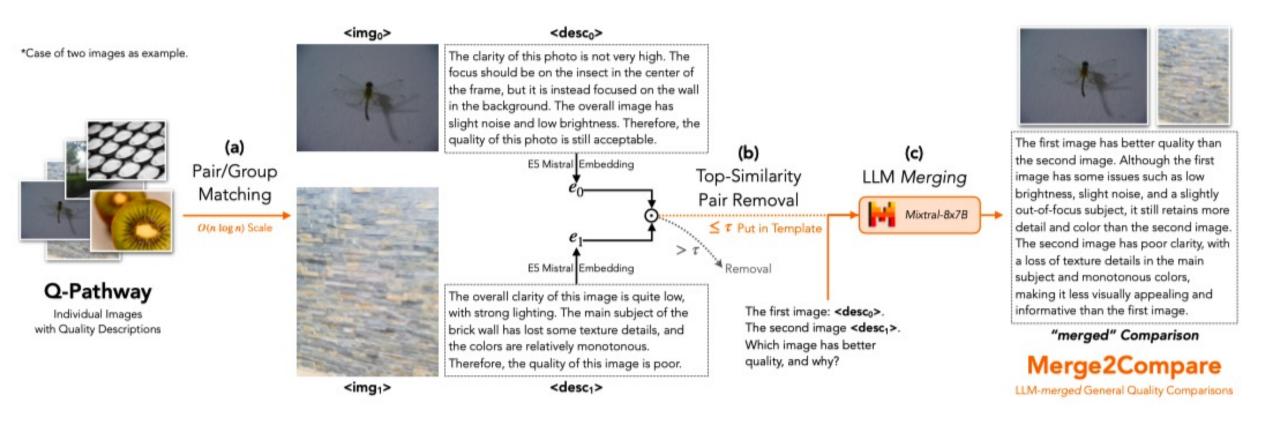
Exisiting LMMs suffer from the ambiguity on absolute evaluations but provide consistent response with **comparative settings**



The first instruction-tuning dataset for visual quality comparison:

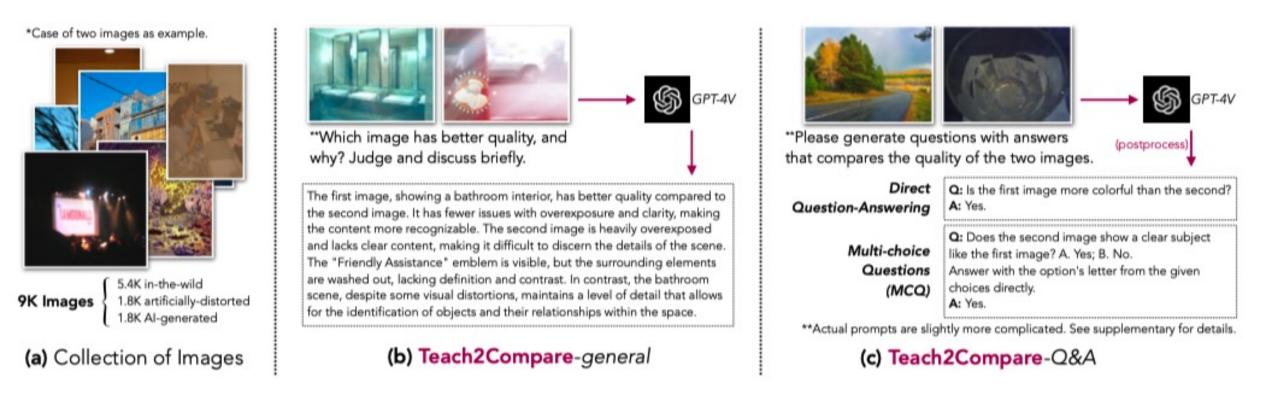
- Merge2Compare: LLM-merged comparisons from Q-Instruct-200K
- Teach2Compare: GPT4V pseudo-labeled comparisons

Merge2Compare



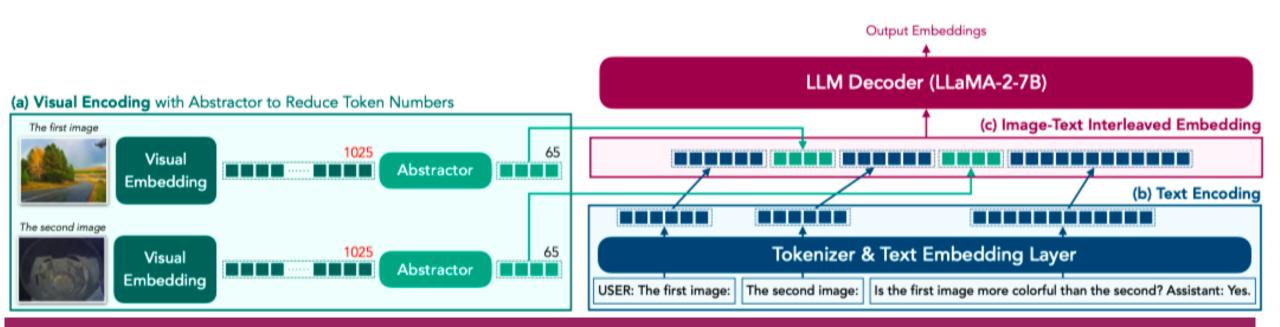
Images are first matched into groups (a), and then filtered via top-similarity removal (b). After filtering, the single image quality descriptions are merged (c) into comparisons by the LLM

Teach2Compare



9K diverse images are collected and matched into 30K groups (a). The groups are then fed to GPT-4V to obtain *general* quality comparisons (b) and question-answering (c) related to quality comparisons.

The structure of Co-Instruct



(a) Images are encoded by visual embedding layers and then passed through an abstractor module to reduce token numbers, and then (c) fused with text embeddings into under the image-text interleaved format.

User: The first image: <img₀> The second image: <img₁> (...) <query> Assistant: <response>

The MICBench

Question: Among all the images, which image has the most vivid color? Candidates: A. The first; B. The third; C. The second. Correct Answer: B. The third

Question: Is the second image the clearest among the three? Candidates: A. Yes; B. No.

Correct Answer: B. No

Question:

In terms of clarity, how does the second image compare to the first one? Candidates: A. The first has better clarity; B. The second has better clarity; C. Both have good clarity; D. Both have poor clarity Correct Answer: A. The first has better clarity

Question: Which image has the most noise? Candidates: A. The first one; B. The second one; C. The third one; D. The fourth one

Correct Answer: A. The first one

Question: Is there a noticeable difference in clarity among these four photos? Candidates: A. Yes; B. No.

Correct Answer: B. No

Question: Compared to the second image, how is the color of the fourth image? Candidates: A. The fourth image has better color; B. The fourth image has worse color; C. Two images have similar color Correct Answer: A. The fourth image has better color (a) Which questions (60%), (b) Yes-or-No questions (22%), and (c) Other types of questions (18%) on three/four images.

We introduce the **MICBench** to cover the open-ended evaluation settings on groups of **three** or **four** images, as a complementary of existing evaluation settings

Experiments: Q–Bench^{PAIR}-A1 (1,999 MCQs)

Sub-categories	Que	stion Typ	es	Low-level C	Concerns	Pairwise		
Model	Yes-or-No↑	What↑	How†	$Distortion\uparrow$	Other↑	$Compare^{\uparrow}$	$Joint\uparrow$	$Overall\uparrow$
random guess accuracy	50.00%	32.03%	33.16%	38.95%	41.95%	38.69%	43.70%	39.82%
(Sep/2023) LLaVA-v1.5-13B	57.34%	47.45%	49.13%	49.01%	59.51%	52.06%	52.00%	52.05%
(Oct/2023) BakLLava	60.09%	45.42%	50.86%	53.09%	58.82%	54.52%	55.55%	52.75%
(Nov/2023) mPLUG-Owl2 (baseline of Co-Instruct)	58.07%	36.61%	48.44%	47.74%	51.90%	45.73%	60.00%	48.94%
(Dec/2023) Emu2-Chat	51.94%	29.78%	53.84%	42.01%	55.71%	46.26%	49.09%	47.08%
(Feb/2024) InternLM-XComposer2-VL	71.81%	58.64%	62.28%	65.77%	63.67%	64.34%	68.00%	65.16%
Qwen-VL-Max (Proprietary)	67.65%	67.56%	65.35%	69.09%	61.18%	68.65%	61.29%	66.99%
Gemini-Pro (Proprietary)	65.78%	56.61%	56.74%	60.42%	60.55%	60.46%	60.44%	60.46%
GPT-4V (Proprietary, teacher of Co-Instruct)	79.75%	69.49%	84.42%	77.32%	79.93%	81.00%	68.00%	78.07%
Non-expert Human	78.11%	77.04%	82.33%	78.17%	77.22%	80.26%	76.39%	80.12%
without Multi-image Comparative Data	60.24%	47.46%	48.78%	52.81%	53.97%	51.42%	59.11%	53.15%
Co-Instruct (Ours)	86.50%	72.20%	79.23%	80.00%	80.62%	81.91%	74.22%	80.18%

Co-Instruct shows far superior accuracy than open-source LMMs: it is 64% better than its baseline (mPLUG-Owl2), 51% better than the variant without our multi-image subsets, and also 23% better than the best of them.

Experiments: Q–Bench^{PAIR}-A2 (499 Descriptions)

Dimensions	Completeness					Preci	ision		Relevance				Sum.↑
Model	$P_0^{$	P_1	$P_{2}^{P_{2}^{}}$	$score^{\uparrow}$	$P_0^{P_0^{}}$	P_1	P_2	$score\uparrow$	$P_0^{$	P_{1}	P_2	score↑	Sum.
(Sep/2023) LLaVA-v1.5-13B	18.77%	73.44%	7.79%	0.89	34.66%	38.72%	26.62%	0.92	1.02%	34.59%	64.39%	1.63	3.44
(Oct/2023) BakLLava	29.46%	59.77%	10.57%	0.80	40.0%	38.08%	21.33%	0.80	2.26%	15.06%	82.04%	1.79	3.40
(Nov/2023) mPLUG-Owl2 (baseline)	19.43%	65.54%	14.45%	0.94	30.94%	43.71%	24.63%	0.92	3.79%	26.94%	68.28%	1.63	3.50
(Dec/2023) Emu2-Chat	41.25%	54.33%	4.42%	0.63	38.11%	36.41%	25.48%	0.87	4.12%	38.61%	57.27%	1.53	3.03
(Feb/2024) InternLM-XComposer2-VL	13.20%	72.17%	14.13%	1.00	31.28%	42.13%	25.77%	0.93	1.60%	24.17%	72.93%	1.70	3.64
Qwen-VL-Max (Proprietary)	11.64%	54.08%	34.08%	1.22	24.26%	$\overline{39.15\%}$	36.22%	1.11	2.533%	10.97%	85.64%	1.82	4.16
Gemini-Pro (Proprietary)	18.22%	44.48%	36.84%	1.18	34.13%	37.95%	27.02%	0.92	0.67%	5.91%	92.22%	1.90	4.00
GPT-4V (Proprietary, teacher of Ours)	4.09%	31.82%	64.09%	1.60	10.44%	45.12%	44.44%	1.34	0.18%	1.69%	96.35%	1.94	4.89
w/o Multi-Image Comparative Data	15.25%	65.76%	18.32%	1.02	39.44%	40.18%	19.62%	0.79	0.09%	9.86%	89.02%	1.87	3.69
Co-Instruct (Ours)	4.04%	31.55%	63.55%	1.58	13.68%	$\overline{43.68\%}$	41.37%	1.26	0.0%	0.44%	98.22%	1.96	4.82

The capability of **Co-Instruct** in reasoning-related comparisons can match that of GPT-4V, while significantly surpassing other existing LMMs

Consistency (κ), **Correlation** (ρ)

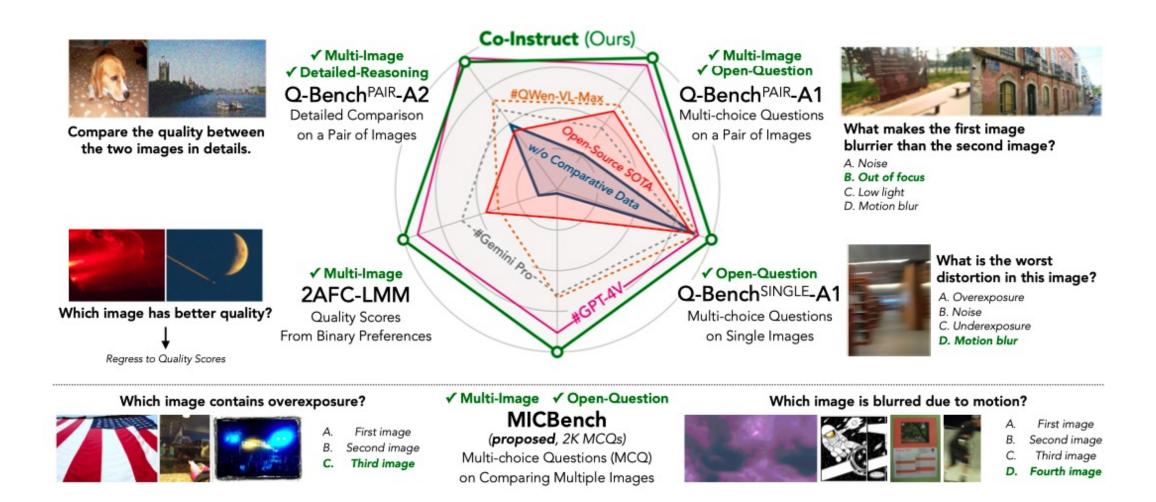
Dataset	CS	IQ	MM21		KADID-10k		LIVEC		KonIQ-10k		SPAQ		weighted avg.	
Model	κ	ρ	κ	ρ	κ	ρ	κ	ρ	κ	ρ	κ	ρ	κ	ρ
(Aug/2023) IDEFICS-Instruct-9B	0.206	0.570	0.337	0.338	0.202	0.552	0.323	0.492	0.251	0.479	0.330	0.474	0.286	0.470
(Sep/2023) LLaVA-v1.5-13B	0.483	0.423	0.356	0.149	0.310	0.137	0.273	0.162	0.262	0.403	0.291	0.156	0.302	0.224
(Oct/2023) BakLLava	0.356	0.235	0.337	0.244	0.245	0.166	0.296	0.159	0.185	0.217	0.274	0.146	0.261	0.185
(Nov/2023) mPLUG-Owl2 (baseline)	0.435	0.627	0.378	0.306	0.402	0.443	0.375	0.441	0.386	0.417	0.362	0.356	0.460	0.397
(Feb/2024) InternLM-XComposer2-VL	0.800	0.527	0.688	0.377	0.600	0.552	0.600	0.516	0.825	0.581	0.700	0.755	0.705	0.567
Qwen-VL-Max (Proprietary)	0.540	0.418	0.497	0.304	0.625	0.406	0.578	0.544	0.631	0.610	0.592	0.718	0.592	0.540
Gemini-Pro (Proprietary)	0.672	0.527	0.604	0.377	0.790	0.552	0.650	0.516	0.652	0.581	0.671	0.755	0.678	0.622
GPT-4V (Proprietary, teacher of Ours)	0.778	0.764	0.792	0.474	0.763	0.560	0.837	0.685	0.835	0.800	0.871	0.876	0.823	0.721
w/o Multi-Image Comparative Data	0.117	0.650	0.480	0.392	0.397	0.466	0.327	0.432	0.489	0.512	0.485	0.397	0.432	0.449
Co-Instruct (Ours)	0.800	0.779	0.852	0.325	0.829	0.685	0.872	0.797	0.883	0.927	0.881	0.931	0.864	0.754

Co-Instruct outperforms all existing models in 2AFC-LMM, including GPT-4V
Co-Instruct also shows very high consistency κ while swapping two images

Sub-categories	Que	stion Type	es	Number	Quandla	
Model	Yes - or - $No\uparrow$	$Which\uparrow$	\overline{Others}		Four	$Overall^{\uparrow}$
#questions	220	594	182	503	493	996
random guess accuracy	49.55%	28.59%	28.31%	34.10%	29.17%	31.47%
(Sep/2023) LLaVA-v1.5-13B (<i>length: 2048→2560</i>)	47.51%	40.74%	52.49%	46.81%	41.90%*	44.38%
(Oct/2023) BakLLava (length: $2048 \rightarrow 2560$)	68.35%	35.01%	52.78%	48.51%	$42.54\%^{*}$	45.56%
(Nov/2023) mPLUG-Owl2 (baseline of Co-Instruct)	62.25%	35.70%	53.71%	44.19%	45.42%	44.80%
(Feb/2024) InternLM-XComposer2-VL (length: $4096 \rightarrow 5120$)	62.95%	47.29%	52.02%	55.70%	$46.51\%^{*}$	51.76%
Qwen-VL-Max (Proprietary)	62.33%	70.00%	81.54%	72.35%	68.79%	70.55%
Gemini-Pro (Proprietary)	75.00%	67.37%	66.92%	68.71%	70.87%	69.79%
GPT-4V (Proprietary, teacher of Co-Instruct)	80.32%	77.28%	78.82%	80.32%	77.28%	78.82%
Non-expert Human	82.27%	78.15%	74.31%	77.18%	79.55%	78.35%
without Multi-image Comparative Data	62.72%	37.54%	53.30%	45.33%	46.65%	45.98%
Co-Instruct (Ours)	79.55%	85.35%	81.32%	84.69%	81.94%	83.33%

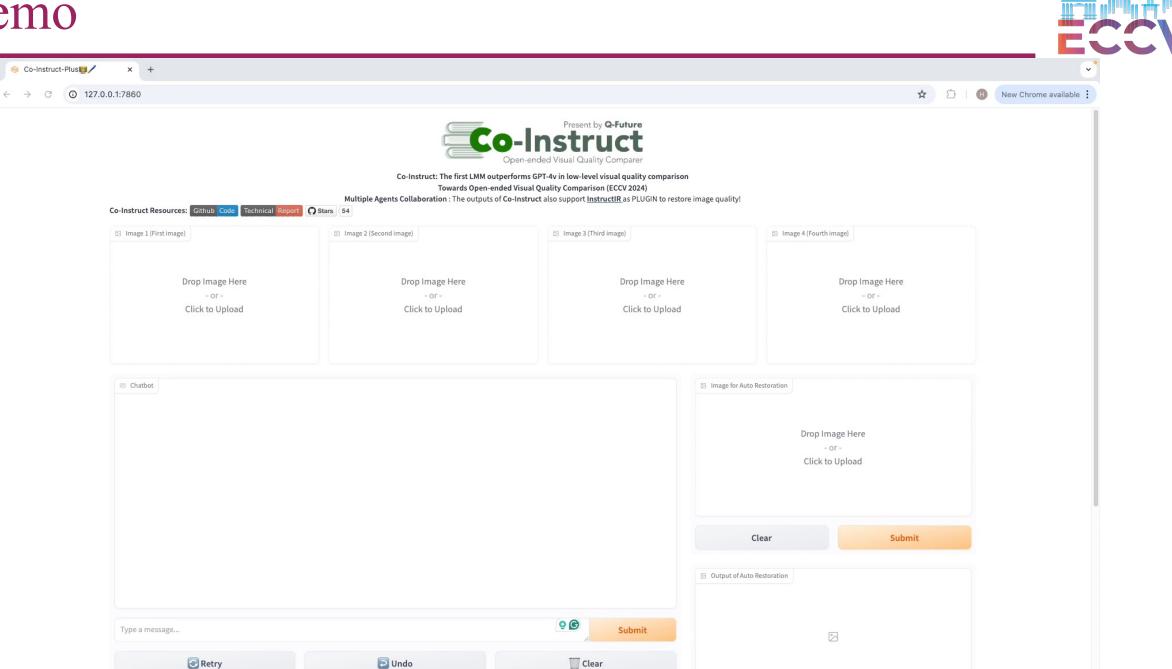
Co-Instruct provides very competitive accuracy on open-question quality comparison among three/four images, **5.7%** better than GPT-4V (best existing) **and 6.4%** more accurate than non-expert human; open-source LMMs even struggle to obtain 50%

Experiments: Overall



H. Wu, H. Zhu, S. Wang, and et al., "Towards Open-ended Visual Quality Comparison," in arXiv preprint arXiv:2402.16641, 2024

Demo



Thanks!

Project Page