https://github.com/Voldemort108X/AdaCS

Yale

Project page

Adaptive Correspondence Scoring for Unsupervised Medical Image Registration

Xiaoran Zhang, John C. Stendahl, Lawrence Staib, Albert J. Sinusas, Alex Wong, James S. Duncan

Yale University

Tracking Anatomies Over Time

MRI video with only ED label

Estimated displacement

MRI video with propagated labels

Unsupervised image registration enables accurate tracking of changes, label propagation, improved diagnosis, and enhanced treatment planning.

Unsupervised Image Registration

Target I_t

Learning to align two images without the need for labels

Unsupervised objective: $\mathcal{L} = rac{1}{|\Omega|} \sum_{x \in \Omega} [I_t(x) - I_s(x + \hat{u}(x))]^2 + \lambda \|
abla \hat{u}(x) \|^2$

Violations of Basic Assumptions

and

first

Reconstructed target

Target

Error map

Violations of Basic Assumptions

first

Reconstructed target

Target

Error map

Occlusions

Heteroscedastic noise

... and many others

A Closer Look

A Closer Look

Our approach:

7

Method

But there is a trivial solution...

Displacement estimator loss:

$$rac{1}{|\Omega|}\sum_{x\in\Omega}\lfloor\hat{S}(x)
floor[I_t(x)-I_s(x+\hat{u}(x))]^2+\lambda\|
abla\hat{u}(x)\|^2$$

Method

Avoid trivial solution:

$$rac{1}{|\Omega|}\sum_{x\in\Omega}[1-\hat{S}(x)]^2$$

Scores correspond to surfaces that are locally smooth:

```
rac{1}{|\Omega|}\sum_{x\in\Omega} \|
abla \hat{S}(x)\|^2
```

Method

Average residuals:

Momentum term: $b_T = \cos rac{\pi}{2} \mu_T; m_T = \gamma m_{T-1} + (1-\gamma) b_T$

**Note: The displacement and scoring estimators are optimized in separate alternating steps (1) and (2)

10

Epoch (T)

Results on ACDC and CAMUS

Our estimated scoring map identifies spurious error residuals and prevents parameter drift during training.

Results on ACDC and CAMUS

Quantitative evaluation						С	Comparison to robust losses								Smoothness										
	$\begin{array}{c} ACDC \\ \hline DSC \uparrow HD \downarrow ASD \end{array}$		$\begin{array}{c} \hline \\ \hline \\ CAMUS \\ \downarrow DSC \uparrow HD \downarrow ASI \end{array}$		$\frac{1}{ASD}$	· _			ACDC		CAMUS					DSC	$\frac{\text{ACDC}}{ I_{c} < 0 + T_{c}}$					JS			
Undeformed Elastix	47.98 7.91 77.26 4.95	2.32 1.28	66.77 80.18	10.87 10.02	2.61 1.81		NCC MI	78.55	4.94 5.25	1.29 1.35	77.01	10.23 9.83	1.89 1.99		Voxelm AdaCS	orph (Ours	79.48 ± 8) 80.50 ±	9.23 8.58	0.29 0.22	0.26 0.43	81.50 ± 5 81.74 ± 8	.58 5 .36	0.60 0.30	0.26 0.43	
Voxelmorph NLL	79.48 4.79 76.49 5.46	$1.27 \\ 1.45$	$81.50 \\ 75.24$	$8.72 \\ 11.05$	$1.74 \\ 2.20$	uxx	TBL MAE	79.31 78.27	4.64 5.36	1.23 1.43	81.18 78.59	8.91 10.23	1.72 1.97		Transm AdaCS	orph (Ours	76.94 \pm 5) 78.39 \pm	8.93 9.06	$0.76 \\ 0.57$	0.60 0.87	79.24 ± 6 79.64 \pm 6	.06 3.37	$\begin{array}{c} 1.41 \\ 0.70 \end{array}$	0.59 0.70	
$\begin{array}{c} \mathbb{Z} \beta \text{-NLL} \\ \mathbb{O} \text{AdaFrame} \\ \mathbb{A} \text{daBeg} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.33 1.67 1.33	79.75 77.88 79.31	9.39 10.54 9.78	$1.93 \\ 1.93 \\ 1.88$		MSE AdaCS	79.48 80.50	$4.79 \\ 4.69$	1.27 1.23	81.50 81.74	8.72 8.55	1.74 1.72		AdaCS	norph (Ours	67.38 ± 1 s) 72.09 ± 1	5.65 . 3.60	0.05 0.06	1.08 1.86	75.23 ± 8 77.65 ± 7	.71 7.64	0.05 0.08	1.06 1.91	
AdaCS (Ours)) 80.50 4.6 9	1.30	81.74 79.24	8.55 10.30	1.72		NCC MI	$73.77 \\ 73.57$	$\begin{array}{c} 6.64 \\ 6.57 \end{array}$	1.12 1.11	$73.03 \\ 74.83$	$\begin{array}{c} 11.87\\ 11.94 \end{array}$	1.70 1.83					Ablation					٦		
β NLL β -NLL β	$\begin{array}{cccc} 73.12 & 7.22 \\ 75.74 & 6.12 \\ \end{array}$	1.27 1.29	75.08 77.39	11.60 10.99	1.79 1.86	tsm	TBL MAE	78.23 74.30	5.11 6.36	1.27 1.28 1.20	79.12 75.96	9.75 11.35	1.84 1.89			Loss ACDC C					CAMU	AMUS			
AdaFrame AdaReg AdaCS (Ours)	67.95 5.72 76.22 5.68) 78.39 5.4 0	1.59 1.29 1.32	78.06 78.12 79.64	9.86 10.62 9.85	1.91 1.84 1.79		AdaCS	76.94 78.39	$5.51 \\ 5.40$	$1.30 \\ 1.32$	79.24 79.64	10.30 9.85	1.79 1.79				eg L _{smooth}	80.24	↑ HD ↓ 4.64	ASD 1.23	$\downarrow DSC \uparrow$ 81.58	HD ↓ 8.89	. ASD	$\stackrel{\downarrow}{=}_{4}$	
Diffusemorph	67.38 $5.8066.24$ 5.84	1.67 1.73	75.23 74.78	9.80 10.62	2.07 2.15		NCC MI TDI	70.25 71.16	5.29 5.40	$1.58 \\ 1.56 \\ 1.62$	75.67 76.19 76.05	10.75 10.09	2.06 2.16	.06 .16		х <u>/</u> я /	×	80.50 77.84	0 4.69	1.23	81.74 79.58	8.55	1.7	2 1	
$\stackrel{\text{O}}{\underset{\bigoplus}{}} \beta$ -NLL $\underset{\bigoplus}{\underset{\bigoplus}{}} AdaFrame$	66.31 5.93 59.78 6.46	1.74 1.93	73.27 75.04	9.85 10.41	2.25 2.10	dfm	MAE MSE	69.12 66.30 67.38	5.73 5.75 5.80	1.63 1.71 1.67	76.05 77.30 75.23	9.54 10.36 9.80	2.06 2.09 2.07			n tsr	×	78.3 9	5.40	1.32	79.64	9.85	2.0	9 	
H AdaReg AdaCS (Ours)	09.41 6.25) 72.09 5.3 5	5 1.78 5 1.53	74.36 77.65	10.66 9.82	2.21 1.99		AdaCS	72.09	5.35	1.53	77.65	9.82	1.99			ff 🏅	- 7 -	72.09	5.35	1.53	77.65	9.82	1.9	9 9	

Our proposed approach consistently outperforms baselines in various architectures and datasets and produces reasonably smooth displacement.

Application - Cardiac Strain Analysis

(A) Segmented clinical echo (rest)

(B) Rest radial strain overlayed with estimated displacement revealing akinetic septal and inferior walls

Conclusion

• We identify the limitation of the widely used unsupervised training objective

• We address this by proposing an adaptive correspondence scoring framework during training

 Our proposed approach can be plugged-and-played into existing frameworks with no extra cost during inference

Xiaoran Zhang https://xiaoranzhang.com/

Project page

Paper

Visit us in poster #152