Yale

Project page

Adaptive Correspondence Scoring for Unsupervised Medical Image Registration

Xiaoran Zhang, John C. Stendahl, Lawrence Staib, Albert J. Sinusas, Alex Wong, James S. Duncan

Yale University

Introduction - unsupervised image registration

Project page

Introduction - unsupervised image registration

Project page

Assumption: Intensity constancy

Introduction - unsupervised image registration

Is intensity constancy the perfect assumption?

Target I_t

Displacement estimator $f_ heta$

Displacement \hat{u}

Warped source $I_s(x+\hat{u})$

Unsupervised objective: $\mathcal{L} = \frac{1}{|\Omega|} \sum_{x \in \Omega} \underbrace{[I_t(x) - I_s(x + \hat{u}(x))]^2}_{\mathcal{L}_{data}} + \lambda \|\nabla \hat{u}(x)\|^2$

Assumption: Intensity constancy

Loss **Desired:** Loss \downarrow Accuracy (Dice) \uparrow Source I_s Target I_t

Motivation

Motivation

Loss 🛉 **Desired:** Loss \downarrow Accuracy (Dice) \uparrow Epoch t +Source I_s Warped $I_s(x+\hat{u}_t)$ Target I_t Error map at tError map at t+ au.

Motivation

Motivation

Existing approach:

Irreconcilable penalties due to absence of correspondence

Intensity constancy assumption violated

Loss ↓ Accuracy (Dice) ↓

Motivation

Our approach:

Re-weight loss with correspondence scoring to regularize outliers

Intensity constancy violation addressed

Method

Project page

Method

Project page

Unsupervised correspondence scoring:

$$\mathcal{L}_{ ext{ucs}} = rac{1}{|\Omega|} \sum_{x \in \Omega} \hat{S}(x) [I_t(x) - I_s(x + \lfloor \hat{u}(x)
floor)]$$

Scoring estimator regularization:

$$\mathcal{L}_{ ext{reg}} = rac{1}{|\Omega|} \sum_{x \in \Omega} [1 - \hat{S}(x)]^2$$

Smoothness regularization:

$$\mathcal{L}_{ ext{smooth}} = m_T rac{1}{|\Omega|} \sum_{x \in \Omega} \|
abla \hat{S}(x)\|^2$$

Results

Project page

Our estimated scoring map identifies and prevents drift caused by spurious error residuals during training.

Results

Our proposed approach outperforms Voxelmorph & Transmorph in ACDC and CAMUS datasets.

Application - cardiac strain analysis

Project page

Figure: A) Segmented clinical echo (rest); B) Rest radial strain overlayed with estimated displacement revealing akinetic septal and inferior walls;

Conclusion

• We identify the limitation of the widely used intensity constancy assumption in unsupervised image registration.

• We address this by proposing an adaptive correspondence scoring framework during training.

• Our proposed approach can be plugged-and-played into existing frameworks with no extra cost during inference.

Visit us in poster #TBD