= il il
J&[;lﬂfll | II/]IT @

SparseSSP

3D Subcellular Structure Prediction from Sparse-View
Transmitted Light Images
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Subcellular Structure Prediction(SSP)

Fluorescence staining requires expensive and advanced instrumentation and time
consuming preparation of materials.

Significant phototoxicity and photobleaching also damage the live cells.

An emerging technology, namely Subcellular Structure Prediction (SSP), enables direct prediction of 3D
immunofluorescence (IF) from transmitted light (TL) images via 3D vision networks.
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Cite from: Ounkomol, Chawin, et al. "Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy.” Nature methods 15.11
(2018): 917-920.



Dense imaging process & Prolonged imaging time

A motor is required to drive the lens to scan more layers on Z-axis for better data quality

In AllenCell collection, each subcellular type is imaged for up to 2.5 hours on a Zeiss spinning disk
microscope.

Prolonged imaging time is unfriendly to capturing the biodynamic process; the physiological motion, such as
cell respiration, introduces the scanning position offset.
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Previous implementations
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However, these one-to-one voxel learning approaches still require a long-time imaging process.



Sparse-View Techniques

Sparse-view techniques have emerged as a prominent
A = e research area in biological and medical garnering

e e Dec. significant attention and interest.
— — - =
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For example, sparse-view techniques can reduce
: coo radiation dose in CT reconstruction with fewer

|
Task S L .
embedding IF results projection times.

Similarly, less imaging time in SSP also reduces
M the phototoxicity of live cells.
o)

ne-to-many voxel
association in Z-axis

Reduction of imaging times enables biologists to
(c) SparsessP (Sparse-view) observe rapid biological dynamics in a cost-effective
manner, facilitating better understanding of
Our proposal subcellular-level activities.



Insights of SparseSSP

Q. How to do sparse-view modeling?

A. Learning for one-to-many voxel regression
Presuppose a target voxel space implicit prior structural features are learned from the training data to
assist in reconstructing the missing information

Q. How to learn better on sparse data?

A. Hybrid Topology Design
Fold sparse images along the Z axis onto the feature dimension, giving them the ability to regroup dense
information during the channel transformation.



One-to-many Voxel Regression

Let A denotes the subsample operator, y denotes reconstructed images, b denotes
Sparse images.

Our goal is to learn the one-to-many mapping f: b — y by solving the Ay = b problem.

But subsample operator A is not an invertible matrix, so there exists infinite solutions
which indicates that this is an undetermined problem.

We can solve this problem by learning the follow mapping: f: A'b - y, which A’
denotes the reconstruction operation. To extract prior knowledge, deep learning
method uses the training data {(b(k), y(k))}};:l and fits the reconstruction process by
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learning the objective which is argmin||(f(b®)) — y®))|| 5.
f

Prefix strategy.
generates the pseudo voxel grid before the model input; in this strategy, the Z-axis information is implicitly restored
through learning the fluorescence prediction.

Postfix strategy.
learns the restore procedure through an explicit upsampling layer, separates two processing purposes.



Hybrid Dimensions Topology

An Example of 3-to-2D

Images collected are 3D Feat. In 3D Feat. Out
sparse in Z-axis
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3D Feat. In 2D Feat. In Faster and less 2D Feat. Out 3D Feat. Out
GPU memory

@@mm) Restore Z-axis gaz==j

Learn the Z-axis information implicit reconstruction through collapse and reprojection
(It looks like an encode-to-decode procedure in depth-view)



Hybrid Dimensions Topology
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A 3-to-2D example apply on DoDNet*
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*(CVPR 2021) Zhang J, Xie Y, Xia Y, et al. Dodnet: Learning to segment multi-organ and tumors from multiple partially labeled
datasets[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 1195-1204.
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Visualization Results
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Comparisons of Strategy Combination

r==s
Approach Interp. Topology| MSE MAF < | MSE M. '\LE R*
RepMode lone 20 6055 .4420 .3632 ,'.'." 6 . ,hlllr 4523 .3493
RepMode lone 3-to-2D | .B668 4376 .4032 | .5769 .- '.. G813 | .6041 4423 ,iifi‘"i'('l
DoDNet lone 201 6103 .4509 .3524 | .6238 3 .324: £ { .460:
DoDNet lone 3-to-2D | .B781 .4368 .3813 | .5860 .442
RepMode [30]| post 3D 5455 .4234 .4193 | .5539 .4360
RepMode ore 3D 0210 .4248 .4453 | .5320 .4197
RepMode host 2D 6043 .4471 .3613 | .6154 .4500
RepMode re 2D 5704 .4532 .3984 | 5812 .4383
RepMode bost  2-to-3D | 5458 .4236 . 0| .5523 .4312

RepMode bre 2-to-3D | .5135 .4173 . 3|.5299 .4194 .4397 | .5624 .4286
RepMode bost. 3-to-2D | .5234 .4132 .4589 | .5356 .4232 .4264 |.5780 .4313
RepMode re 3-to-2D .5[}69 4140 . . 4136 .- 0468 .4222
DoDNet [25] post 3D . A241 4243 | 5541 4313 4117 | .0 4381

DoDNet pre 3D . 4257 .4512 | .5392 .4318
DoDNet post 2D 6012 4487 .3643 | .6045 .4412
DoDNet pre 2D 5751 .4372 .3883 | .5793 .4342
DoDNet post  2-to-3D | .5486 .4329 .4232| .5554 .4382
DoDNet pre  2-to-3D | .5244 .4185 .4¢ 5367 .4150
DoDNet post  3-to-2D |.5354 .4213 . 5475 4335
DoDNet pre  3-to-2D |.5128 .4118 -1 ll. 5229 .4133 .4
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Combination of prefix interpolation and 3-to-2D strategies demonstrated
significantly better performance than others.



Topology Strategies on Diverse Multi-task Methodologies

Strategy Strategy
-®- DoDNet(3-2D) 0 46 T~ -®- Tgnet(3-2D)
DoDMet{3D) ) B Tgnet(3D)

We compare 5 SOTA multi-task methodologies.
Trend of R2 value as sparsity ratio increased from 2 to 8.
Hybrid dimensions topology 3-to-2D (i.e., the blue lines in the figure) shows a slower
decay and higher global scores than pure 3D topology (i.e., the orange lines).



Comparisons on Resource Consumption

GPU Infer. GPU Train. Computation
Approach|Topology|time(s/iter) Mem.(MiB)|Speed(iter/s) Mem.(MiB) MACs
RepMode 3D 4.47 9122 0.89 17843 66.29G
RepMode 2D 0.66 2472 3.31 3548 2.33G
RepMode| 2-to-3D 1.86 3666 1.86 8984 30.11G
RepMode| 3-to-2D 2.55 5428 1.29 15521 43.47G
DoDNet 3D 2.11 4710 2.64 16054 113.86G
DoDNet 2D 0.35 1982 4.70 2692 1.82G
DoDNet | 2-to-3D 1.04 2897 3.31 4384 41.02G
DoDNet | 3-to-2D 1.35 4124 4.53 14362 76.61G
TSNs 3D 1.09 6862 7.19 10458 55.70G
TSNs 2D 0.37 1720 31.12 2793 2.05G
TSNs 0.86 2028 10.2 5729 13.94G
TSNs 0.91 3554 8.91 7522 46.77G

Hybrid dimensions topologies demonstrate less resource consumption than pure 3D, especially in MACs.
The number of iterations in training is the number of the loss backward operations
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Paper link:
Code link:


https://arxiv.org/abs/2407.02159
https://github.com/JintuZheng/SparseSSP
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