Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather

Junsung Park, Kyungmin Kim, Hyunjung Shim

ECCV 2024 Oral

Contents

- 1. Problem Statement
- 2. Toy Experiments
- 3. Methods
- 4. Experiments

1. Problem Statement

1. Problem Statement

Overview

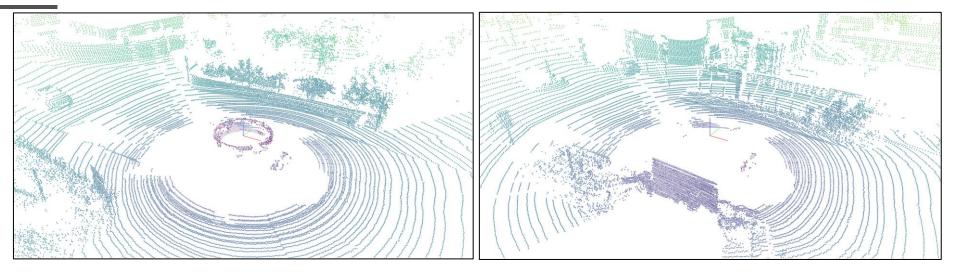


Fig 1. LiDAR Points in Clean Weather.

- Most of the driving scenes are acquired in clean weather conditions.
- Low noise and well-aligned LiDAR points

1. Problem Statement

Overview

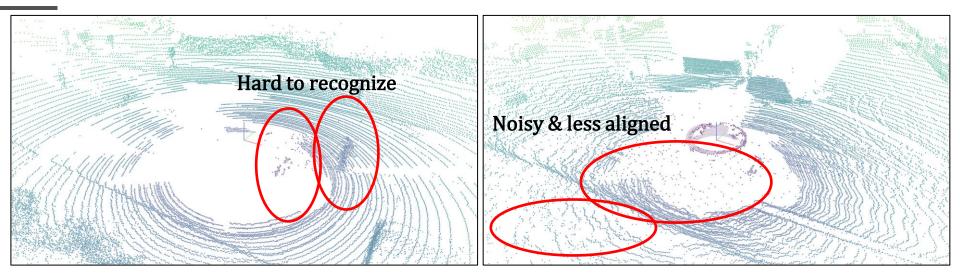
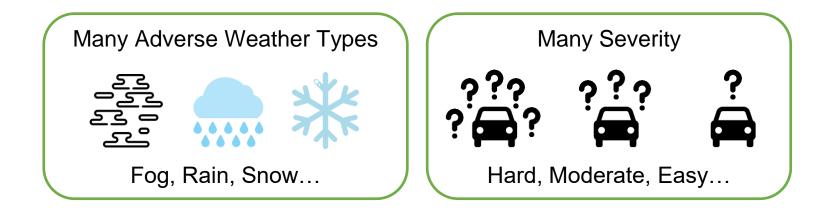


Fig 2. LiDAR Points in Fog and Snow Weather.

- Adverse weather includes rain, snow, fog, etc. They are noisy and poorly aligned.
- It hinders the LiDAR semantic segmentation task.

Previous Works

• Acquiring data in adverse weather conditions is challenging.



• Previous works focused on simulations.

Previous Works

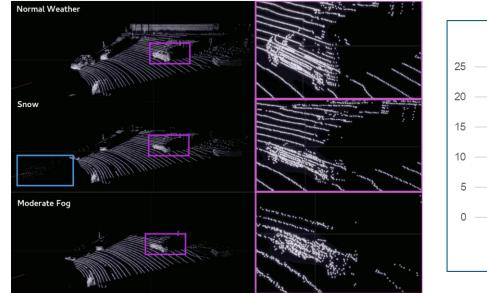


Fig 5. Weather Simulation.

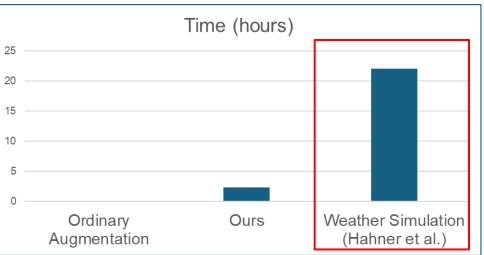
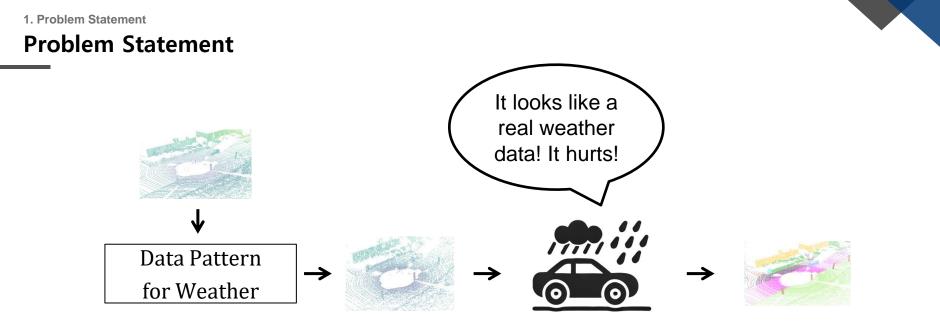


Fig 6. Time Spent on Augmentation.

• Simulation methods require substantial computational resources.



Aug. Points LiDAR Segmentation model Prediction

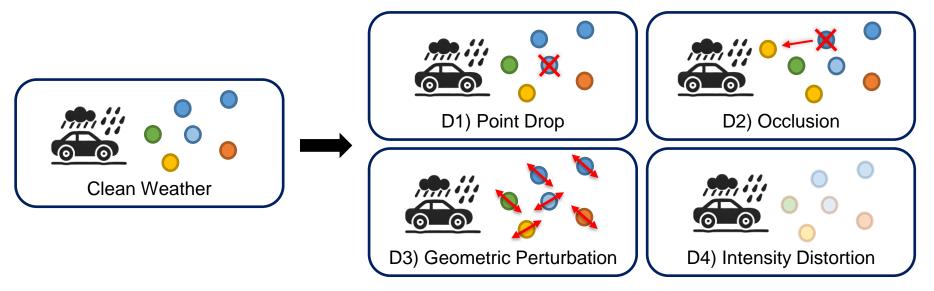
- Data pattern contributing to performance degradation *in a data-centric manner*.
 - Utilize data pattern to generate weather-conditioned data.
- No need of precise weather simulation.

2. Toy Experiments

2. Toy Experiments

Previous Analysis of Adverse Weathers

• The common physical phenomena in previous research:



- What is "main factor" contributing to deterioration?
 - Toy experiments!

Toy Experiments

Distortion	car	bi.cle	mt.cle	truck	oth-v.	pers.	bi.clst	mt.clst	road	parki.	sidew.	oth-g.	build.	fence	veget.	trunk	terra.	pole	traf.	mIoU
Clean	96.8	22.2	66.9	89.1	65.2	67.0	84.7	0.0	93.8	50.6	81.4	0.1	91.1	63.0	88.1	67.7	74.5	63.8	47.7	63.9
$\mathbf{D1}: \mathbf{Soft}$	96.3	17.9	63.4	87.1	63.7	64.3	81.4	0.0	92.7	47.5	79.7	0.1	90.1	62.3	87.3	64.2	74.1	61.1	41.6	61.8
D1 : Hard	86.1	0.2	12.7	21.0	40.0	10.1	24.4	0.0	4.2	10.2	11.1	0.0	71.7	47.8	77.0	34.6	27.6	30.4	17.6	27.7
$\mathbf{D2}$: Soft	94.8	16.3	51.7	66.3	53.9	59.2	52.1	0.0	92.5	44.9	79.2	0.1	89.7	61.4	87.3	63.2	74.3	59.2	40.2	57.2
D2 : Hard	81.3	0.5	5.4	13.1	35.5	7.6	0.7	0.0	2.6	8.5	10.8	0.0	71.1	45.7	76.3	32.9	27.3	26.7	16.1	24.3
$\mathbf{D3}$: Soft	96.2	15.4	56.7	58.6	51.3	51.8	78.1	0.0	66.3	33.9	46.1	0.0	86.1	61.6	84.4	62.0	56.8	61.5	44.0	53.2
D3 : Hard	93.8	9.7	38.3	19.4	31.4	35.2	55.2	0.0	9.9	12.3	12.2	0.0	48.9	40.8	71.4	55.5	31.2	58.7	40.8	35.0
D4: Soft	96.3	21.7	61.1	89.4	61.8	68.9	83.2	0.0	92.9	44.4	79.1	0.1	90.4	56.7	86.9	68.2	71.1	63.9	48.3	62.3
$\mathbf{D4}$: Hard	95.0	17.2	50.4	81.4	57.0	64.9	79.7	0.0	90.7	38.8	64.7	0.9	88.4	45.3	83.5	62.8	50.5	60.1	47.9	56.8

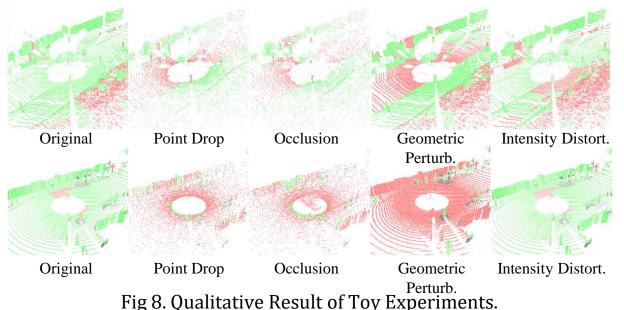
Tab 1. Result of Toy Experiments.

D1) Point drop D2) Occlusion D3) Geometric perturbation D4) Intensity distortion

• Point drop, and geometric perturbation are critical factors.

2. Toy Experiments

Toy Experiments

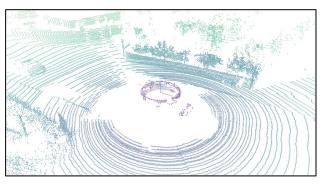


- Occlusion can be interpreted as point drop.
- The main factors under adverse weather: geometric perturbation and point drop.

Our contribution!

3. Methods

3. Methods Concept of Methods



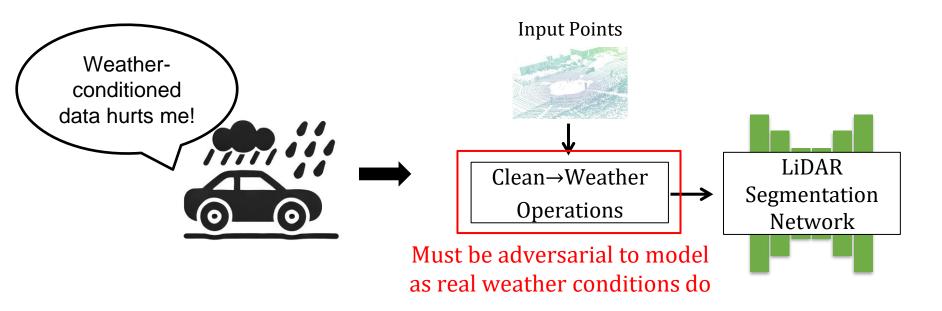
LiDAR Simple Representation: XYZ coords, Intensity

Image Complex Representation: Curvature, Texture, Colors...

• LiDAR data have lower representation power to depict objects than images.

VS

• Hand-crafted operation can be a transformation of source-to-target.



- Real weather conditions work adverse to LiDAR segmentation model.
- Our output of source-to-target operation should be adverse to the model, too.

3. Methods

Overall Methods

Our contribution!

Selective Jittering (SJ) for (1) Geometric Perturbation
Depth Selective Jittering
Angle Selective Jittering (ASJ) Range Jittering (RJ)
Clean Data 🔲 Jittered Data 🗋 Range Jittered Data

Fig 10. Selective Jittering.

• Selective Jittering (SJ) perturbs point coordinates within random regions.

3. Methods Overall Methods

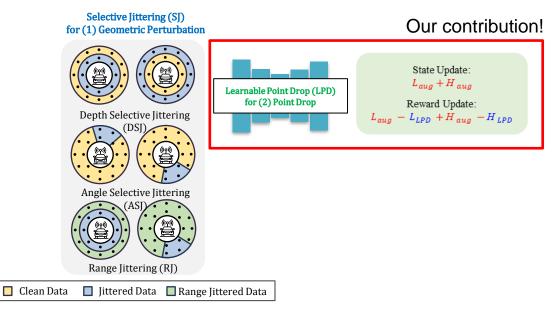


Fig 11. Learnable Point Drop.

- Learnable Point Drop (LPD) utilize a reinforcement learning model.
- LPD module drops points that make the model vulnerable.

3. Methods Overall Methods

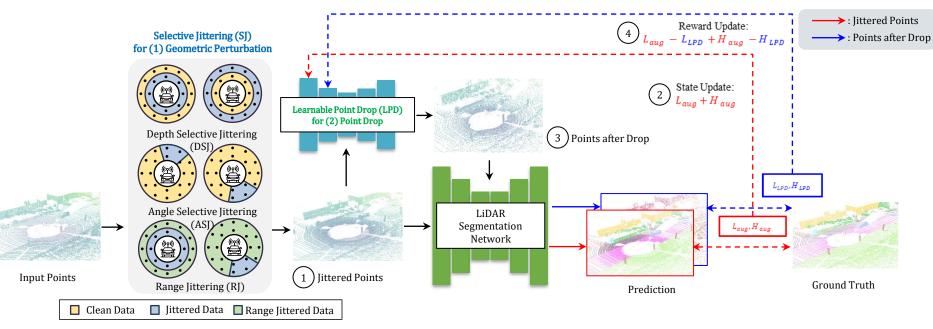


Fig 12. Overall Method.

4. Experiments

4. Experiments Main Experiments

(a) SemanticKITTI \rightarrow SemanticSTF												
Methods	D-fog	L-fog	Rain	Snow	mIoU							
Oracle	51.9	54.6	57.9	53.7	54.7							
Baseline LaserMix [13] PolarMix [31] PointDR [*] [33]		15.5	$29.7 \\ 9.3 \\ 16.5 \\ \underline{35.5}$	7.8	$31.4 \\ 14.7 \\ 15.3 \\ \underline{33.9}$							
Baseline+SJ+LPD Increments to baseline			37.6 +7.9	33.1 +7.8	39.5 +8.1							

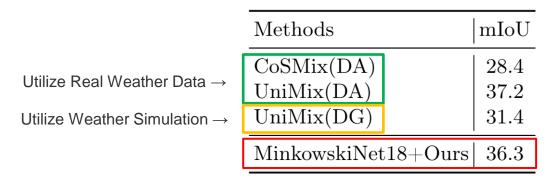
(b) SynL	iDAR—	\rightarrow Seman	ticSTF		
Methods	D-fog	L-fog	Rain	Snow	mIoU
Oracle	51.9	54.6	57.9	53.7	54.7
Baseline LaserMix [13] PolarMix [31] PointDR [*] [33] PointDR [*] ‡	$\begin{array}{c c} 15.24 \\ 15.32 \\ 16.47 \\ \underline{19.09} \\ 21.41 \end{array}$	$15.97 \\ 17.95 \\ 18.69 \\ 20.28 \\ \underline{20.94}$	$16.83 \\ 18.55 \\ 19.63 \\ \underline{25.29} \\ 25.48$	$12.76 \\ 13.8 \\ 15.98 \\ \underline{18.98} \\ 19.31$	$ \begin{array}{r} 15.45\\ 16.85\\ 18.09\\ 19.78\\ \underline{20.47} \end{array} $
Baseline+SJ+LPD Increments to baseline Baseline+SJ+LPD‡ Increments to baseline	$ \begin{array}{r} 19.08 \\ +3.8 \\ 18.99 \\ +3.7 \end{array} $	20.65 +4.7 21.22 +5.3	$21.97 + 5.1 \\ 23.14 + 6.3$	$17.27 + 4.5 \\ 17.28 + 4.5$	$20.08 \\ +4.6 \\ 20.51 \\ +5.1$

Tab 2. Main Results of Experiments.

- Our method surpasses the previous state-of-the-art on the SemanticSTF dataset.
- No need of precise physics-based simulations.

4. Experiments

Comparison with Domain Generalization(Adaptation) Methods



Tab 3. Comparison with Other Domain Generalization/Adaptation Methods.

• Specifically, our approach outperforms the previous state-of-the-art method, UniMix.

4. Experiments Qualitative Results

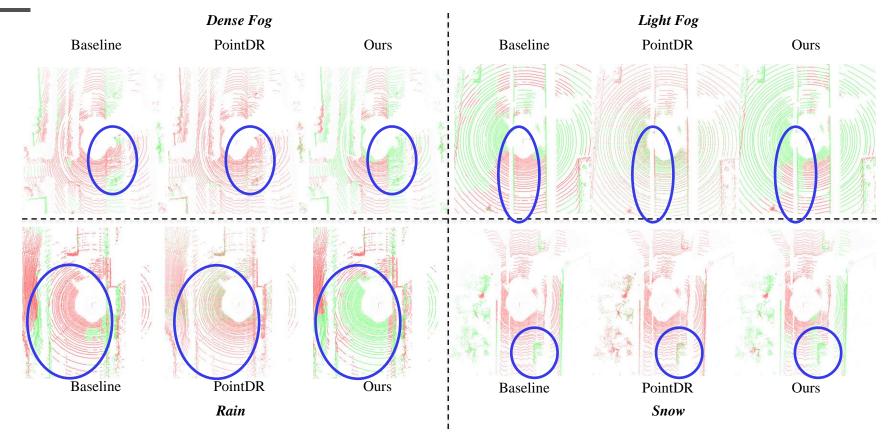


Fig 13. Qualitative Results. Green(Red) point is true(false) prediction.

ML

• Identified key degradation factors of adverse weather.

• The first data-centric approach that integrate various weather types and severities.

• Addressed the challenges of synthesizing all specific weather types and severities.

Thank You for Listening!

See You in Poster #149

Project page:

https://engineerjpark.github.io/ECCV2024LiDARWeather/

Code:

https://github.com/engineerJPark/LiDARWeather

E-mail: jshackist@kaist.ac.kr

Appendix

Appendix Details About LPD

$$L_{DQN} = \mathbb{E}_{i,s,a} \left[\left(r + \gamma \max_{a'} Q'(s', a'; \theta_{i-1}) - Q(s, a; \theta_i) \right)^2 \right].$$

$$L_{total} = L_{aug} + L_{LPD} + L_{DQN}.$$

- Reward of LPD let point drop degrade or confuse LiDAR segmentation model.
- LPD module uses the same framework & loss as the original DQN did.

Methods	car	bi.cle	mt.cle	truck	oth-v.	pers.	bi.clst	mt.clst	road	parki.	sidew.	oth-g.	build.	fence	veget.	trunk	terra.	pole	traf.	mIoU
Clean	0.0										89.8	0.0	98.2	53.7	76.8	90.3	0.0	86	95.2	53.8
D1: soft	0.0	37.0	86.7	0.0	0.0	89.5	87.8	0.0	92.6	0.0	85.1	0.0	93.8	32.4	39.5	80.9	0.0	84.7	93.0	50.2
$\mathbf{D1}$: hard																				
$\mathbf{D2}$: soft																				31.2
$\mathbf{D2}$: hard	0.0	0.2	52.5	0.0	0.0	50.3	48.4	0.0	20.6	0.0	3.1	0.0	4.0	0.2	0.1	10.5	0.0	2.2	8.7	11.1
$\mathbf{D3}:\mathrm{soft}$	0.0	55.7	79.6	0.0	0.0	86.5	87.4	0.0	45.0	0.0	50.4	0.0	55.3	22.3	6.8	74.1	0.0	69.5	29.1	34.8
$\mathbf{D3}$: hard	0.0	12.5	11.3	0.0	0.0	63.3	32.9	0.0	0.2	0.0	3.5	0.0	6.6	1.9	2.8	45.6	0.0	4.1	0.1	9.7
$\mathbf{D4}:\mathrm{soft}$	0.0	54.8	94.1	0.0	0.0	94.8	93.8	0.0	94.8	0.0	89.8	0.0	98.2	53.8	76.6	90.2	0.0	86	95.2	53.8
$\mathbf{D4}$: hard	0.0	54.8	94.1	0.0	0.0	94.8	93.8	0.0	94.8	0.0	89.8	0.0	98.2	53.8	76.6	90.2	0.0	86	95.2	53.8

Tab A1. Result of Toy Experiments in SynLiDAR.

D1) Point drop D2) Occlusion D3) Geometric perturbation D4) Intensity distortion

• Point drop, occlusion, and geometric perturbation are also critical factors in SynLiDAR.

Appendix Class IoU on SemanticKITTI→SemanticSTF

Methods	car	bi.cle	mt.cle	truck	oth-v.	pers.	bi.clst	mt.clst	road	parki.	sidew.	oth-g.	build.	fence	veget.	trunk	terra.	pole	traf.	mIoU
Oracle	89.4	42.1	0.0	59.9	61.2	69.6	39.0	0.0	82.2	21.5	58.2	45.6	86.1	63.6	80.2	52.0	77.6	50.1	61.7	54.7
Baseline	67.1	5.0	28.1	38.5	<u>14.6</u>	45.8	8.3	13.8	40.1	16.1	26.1	3.3	71.6	52.7	53.8	33.9	39.2	25.3	12.7	31.4
LaserMix [4]	18.6	5.4	0.0	9.9	1.6	0.6	7.9	10.5	47.6	6	12.1	1.8	21.6	20.2	48.4	6.6	37.8	19	2.8	14.7
PolarMix 7	21	2	0.0	3.8	1.6	2.8	0.6	0.0	58.3	4.4	17.4	1.4	40.7	36.4	41.3	6.6	35	14.6	2.8	15.3
$\operatorname{PointDR}^*$ [9]	<u>69.2</u>	1	8.9	41.9	7.6	<u>48.9</u>	17.0	<u>36.2</u>	57.8	<u>15.9</u>	<u>32.3</u>	<u>4.0</u>	75.7	46.4	<u>54.0</u>	<u>36.2</u>	<u>43.9</u>	23.7	<u>24.2</u>	<u>33.9</u>
Baseline+SJ+LPD	86.1	4.8	13.8	39.7	26.6	55.4	8.5	50.4	63.7	14.9	37.9	5.5	75.2	52.7	60.4	39.7	44.9	30.1	40.8	39.5
Increments to baseline	+19.0	-0.2	-14.3	+1.1	+12.0	+9.6	+0.2	+36.6	+23.5	-1.2	+11.9	+2.2	+3.6	0.0	+6.7	+5.8	+5.7	+4.9	+28.2	+8.1

Tab A2. Class IoU on the SemanticKITTI→SemanticSTF.

- Performance enhancement in several classes.
- Performance drop in bicycles and motorcycles is due to their sparsity.

Methods	car	bi.cle	mt.cle	truck	oth-v.	pers.	bi.clst	mt.clst	road	parki.	sidew.	oth-g.	build.	fence	veget.	trunk	terra.	pole	traf.	mIoU
Oracle	89.4	42.1	0.0	59.9	61.2	69.6	39.0	0.0	82.2	21.5	58.2	45.6	86.1	63.6	80.2	52.0	77.6	50.1	61.7	54.7
Baseline	33.76	1.71	3.29	15.54	0.24	25.52	1.65	3.43	15.27	9.16	16.76	0.05	33.38	21.89	39.49	18.7	44.03	8.75	0.84	15.45
LaserMix [4]	52.41	5.6	1.05	7.91	1.96	25.59	1.62	2.92	44.58	6.44	21.21	0.88	16.95	23.61	40.75	18.91	41.45	5.65	0.7	16.85
PolarMix 7	48.93	4.23	2.32	14.64	2.37	24.55	2.14	4.64	34.64	7.66	19.8	0.39	37.44	22.3	44.85	21.32	43.18	7.08	1.3	18.09
PointDR [*] [9]	41.07	2.81	3.43	18.05	0.17	31.3	2.81	3.3	34.39	10.23	19.72	<u>0.96</u>	52.72	21.98	48.49	21.33	38.31	19.19	5.61	19.78
$\operatorname{PointDR}^{*}$ ‡ [9]	36.13	3.47	2.15	21.93	0.31	28.72	1.69	5.09	42.92	9.31	20.71	0.58	50.83	26.88	46.85	24.49	37.69	22.74	6.45	20.47
Baseline+SJ+LPD	42.13	2.79	2.68	19.22	0.67	29.22	1.91	4.8	42.32	8.67	21.05	1.56	48.23	25.97	47.17	22.11	32.8	21.74	6.54	20.08
Increments to baseline	+8.4	$^{+1.1}$	-0.6	+3.7	+0.4	+3.7	+0.3	+1.4	+27.0	-0.5	+4.3	$^{+1.5}$	+14.9	+4.1	+7.7	+3.4	-11.2	+13.0	+5.7	+4.6
Baseline+SJ+LPD‡	39.26	2.89	0.89	19.39	0.75	27.68	2.19	3.78	42.5	9.35	21.55	0.3	51.89	33.48	47.38	23.11	33.31	23.22	6.78	20.51
Increments to baseline	+5.5	+1.2	-2.4	+3.8	+0.5	+2.2	+0.5	+0.4	+27.2	+0.2	+4.8	+0.3	+18.5	+11.6	+7.9	+4.4	-10.7	+14.5	+5.9	+5.1

Tab A3. Class IoU on the SynLiDAR \rightarrow SemanticSTF.

- Performance enhancement in several classes.
- Performance drop in motorcycles is due to their sparsity.

Appendix Various Input Representations

	Method	SemanticSTF	SemanticKITTI-C
	CENet	14.2	49.3
	SPVCNN	28.1	52.5
	Minkowski	31.4	53.0
Range image based	CENet+Ours	$22.0 \ (+7.8)$	53.2 (+3.9)
Point-voxel based	$\mathrm{SPVCNN}\mathrm{+}\mathrm{Ours}$	$38.4 \ (+10.3)$	$52.9 \ (+0.4)$
	$\operatorname{Minkowski+Ours}$	$39.5\ (+8.1)$	$58.6\ \ (+5.6)$

Tab A4. Results across Various Input Representations.

• Strong performance across various datasets and input representations.

Appendix Ablation Study

Methods	Clean	D-fog	L-fog	Rain	Snow	mIoU
Baseline	63.9	30.7	30.1	29.7	25.3	31.4
+ASJ	62.1 (-1.8)	33.3	35.4	37.8	31.6	36.8 (+5.4)
						37.6 (+6.2)
+RJ	61.2 (-2.7)	33.4	<u>37.0</u>	35.7	33.5	38.7 (+7.3)
+LPD	62.8 (-1.1)	36.0	37.5	37.6	<u>33.1</u>	39.5 (+8.1)

Tab A5. Ablation Study.

- All components contribute to performance enhancement.
- Reasonable performance maintenance in clean weather.

Appendix Hyperparameter Ablation Study

		Selective .	Jitterin	g		Learable Point Drop						
DSJ range	mIoU	ASJ $\varDelta \theta$	mIoU	Gaussian σ	mIoU	Batch size	mIoU	Discount γ	mIoU	Decay ϵ	mIoU	
[2, 5]	39.3	$\frac{1}{2}\pi$	38.1	0.001	37.5	8	37.1	0.5	37.8	100	38.5	
[3, 6]	38.8	$\frac{3}{4}\pi$	39.9	0.005	38.4	16	37.1	0.8	38.4	500	38.7	
[4,7]	37.8	π	39.5	0.01	39.5	32	39.5	0.9	38.4	1000	39.5	
[5,8]	39.5	$\frac{5}{4}\pi$	40.0	0.05	37.3	64	38.2	0.99	39.5	2000	37.3	
[6, 9]	37.8	$\frac{3}{2}\pi$	39.3	0.1	37.9	128	37.0	0.999	38.8	3000	40.3	
deviation	0.8	deviation	0.2	deviation	1.3	deviation	1.7	deviation	0.9	deviation	0.7	

Tab A6. Hyperparameter Ablation Study.

• Our methods are robust to change of hyperparameter.

Appendix Point Drop Ratio of LPD

Distance $ 0 \sim 10 \text{m} 10 \sim 20 \text{m} $	$20{\sim}30\mathrm{m}\left 30{\sim}40\mathrm{m}\right $	$ 40{\sim}50\mathrm{m} 50{\sim}60\mathrm{m}$	$ 60{\sim}70m 70{\sim}80m 8$	0~90m
Ratio 80.6 78.6	78.7 77.4	76.2 75.5	76.2 76.4	72.5

Tab A7. Point Drop Ratio of LPD Module in Specific Depth Ranges.

- LPD drops more points when the distance of points is large.
- Physically feasible drop ratio with respect to real weather.

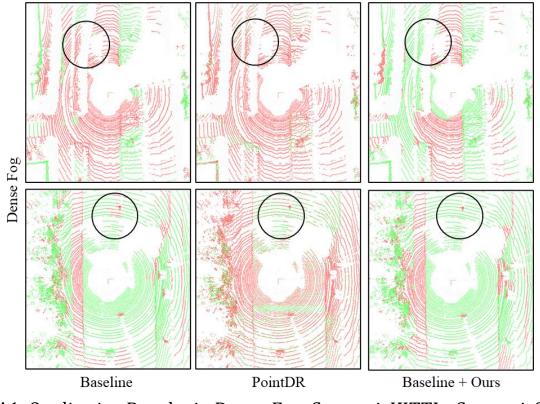


Fig A1. Qualitative Results in Dense Fog, SemanticKITTI \rightarrow SemanticSTF

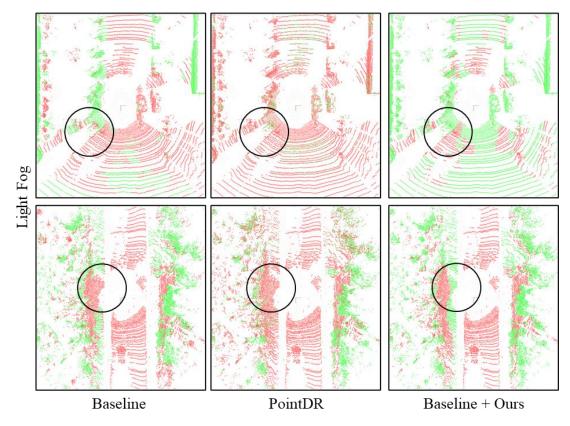


Fig A2. Qualitative Results in Light Fog, SemanticKITTI→SemanticSTF

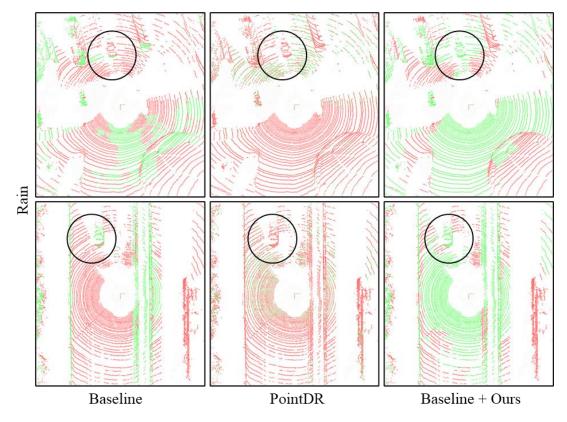


Fig A3. Qualitative Results in Rain, SemanticKITTI \rightarrow SemanticSTF

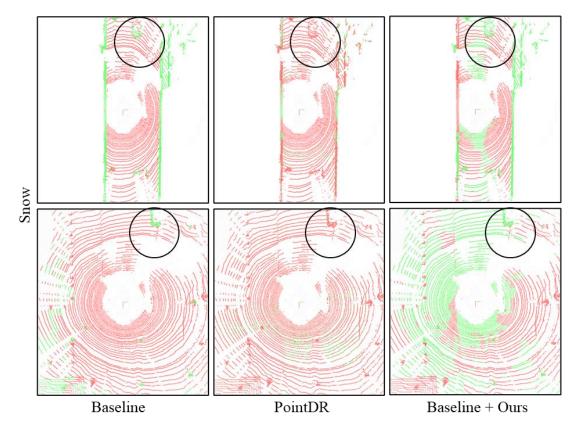


Fig A4. Qualitative Results in Snow, SemanticKITTI→SemanticSTF

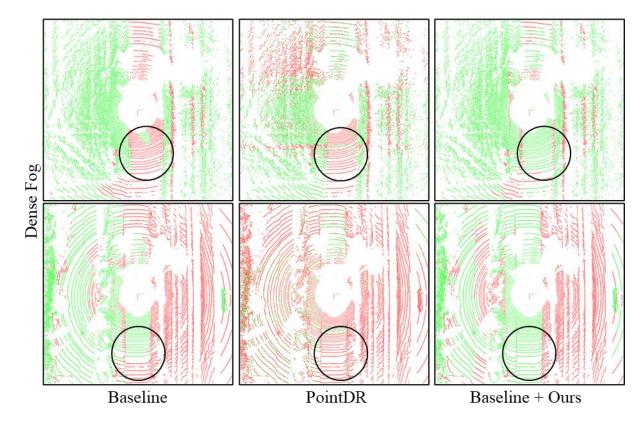


Fig A5. Qualitative Results in Dense Fog, SynLiDAR→SemanticSTF

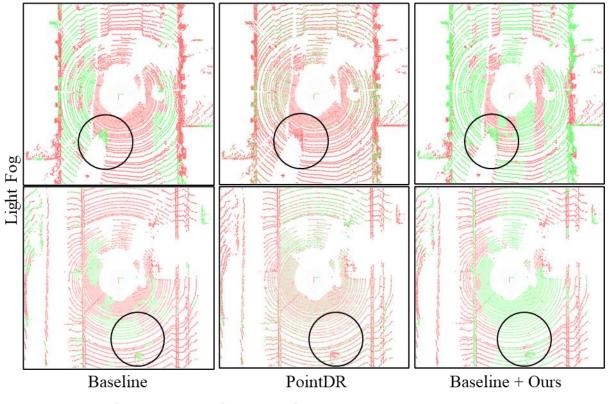


Fig A6. Qualitative Results in Light Fog, SynLiDAR \rightarrow SemanticSTF

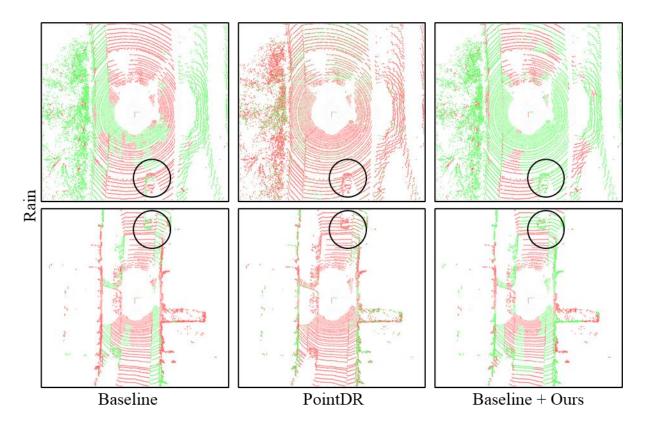


Fig A7. Qualitative Results in Rain, SynLiDAR→SemanticSTF

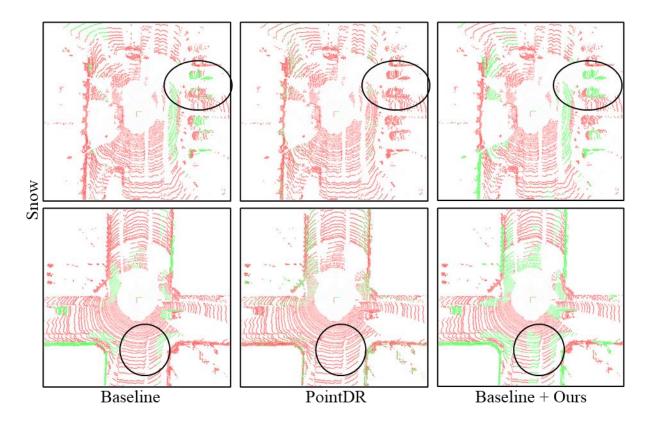


Fig A8. Qualitative Results in Snow, SynLiDAR→SemanticSTF

