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● Most of the driving scenes are acquired in clean weather conditions.

● Low noise and well-aligned LiDAR points

Overview

1. Problem Statement

Bijelic, Mario, et al. "Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather." CVPR. 2020.

Fig 1. LiDAR Points in Clean Weather.
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Overview

1. Problem Statement

Bijelic, Mario, et al. "Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather." CVPR. 2020.

Hard to recognize

Fig 2. LiDAR Points in Fog and Snow Weather.

Noisy & less aligned

● Adverse weather includes rain, snow, fog, etc. They are noisy and poorly aligned.

● It hinders the LiDAR semantic segmentation task.
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● Acquiring data in adverse weather conditions is challenging. 

Previous Works

1. Problem Statement

Flaticon: Lumi, Hasymi, Freepik, Bharat Icons

● Previous works focused on simulations.

Many Adverse Weather Types

Fog, Rain, Snow…

Many Severity

Hard, Moderate, Easy…
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● Simulation methods require substantial computational resources.

Previous Works

1. Problem Statement

Kilic, Velat, et al. "Lidar light scattering augmentation (lisa): Physics-based simulation of adverse weather conditions for 3d object detection." arXiv preprint. (2021).

Fig 5. Weather Simulation. Fig 6. Time Spent on Augmentation.
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● Data pattern contributing to performance degradation in a data-centric manner.

● Utilize data pattern to generate weather-conditioned data.

● No need of precise weather simulation.

Problem Statement

1. Problem Statement

It looks like a 

real weather 

data! It hurts!

Aug. Points

Data Pattern

for Weather

LiDAR Segmentation model Prediction



2. Toy Experiments
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● The common physical phenomena in previous research:

Previous Analysis of Adverse Weathers

2. Toy Experiments

● What is "main factor" contributing to deterioration?

● Toy experiments!

Clean Weather

D1) Point Drop

D3) Geometric Perturbation D4) Intensity Distortion

D2) Occlusion
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● Point drop, and geometric perturbation are critical factors.

Toy Experiments

2. Toy Experiments

Tab 1. Result of Toy Experiments.
D1) Point drop  D2) Occlusion  D3) Geometric perturbation  D4) Intensity distortion
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● Occlusion can be interpreted as point drop.

● The main factors under adverse weather: geometric perturbation and point drop.

Toy Experiments

2. Toy Experiments

Original Geometric 

Perturb.

Point Drop Occlusion Intensity Distort.

Original Geometric 

Perturb.

Point Drop Occlusion Intensity Distort.

Fig 8. Qualitative Result of Toy Experiments.

Our contribution!



3. Methods
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● LiDAR data have lower representation power to depict objects than images.

● Hand-crafted operation can be a transformation of source-to-target.

Concept of Methods

3. Methods

VS

LiDAR

Simple Representation: 

XYZ coords, Intensity

Image

Complex Representation:

Curvature, Texture, Colors…
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● Real weather conditions work adverse to LiDAR segmentation model.

● Our output of source-to-target operation should be adverse to the model, too.

Concept of Methods

3. Methods

Weather-

conditioned 

data hurts me!

Input Points

LiDAR 
Segmentation

Network

Clean→Weather

Operations

Must be adversarial to model
as real weather conditions do
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● Selective Jittering (SJ) perturbs point coordinates within random regions.

Overall Methods

3. Methods

Clean Data Jittered Data Range Jittered Data

Selective Jittering (SJ)
for (1) Geometric Perturbation

Depth Selective Jittering 
(DSJ)

Angle Selective Jittering 
(ASJ)

Range Jittering (RJ)

Fig 10. Selective Jittering.

Our contribution!
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● Learnable Point Drop (LPD) utilize a reinforcement learning model.

● LPD module drops points that make the model vulnerable.

Overall Methods

3. Methods

Learnable Point Drop (LPD)
for (2) Point Drop

Clean Data Jittered Data Range Jittered Data

Selective Jittering (SJ)
for (1) Geometric Perturbation

Depth Selective Jittering 
(DSJ)

Angle Selective Jittering 
(ASJ)

Range Jittering (RJ)

Fig 11. Learnable Point Drop.

Our contribution!
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Overall Methods

3. Methods

: Jittered Points 

: Points after Drop

Ground TruthPrediction

LiDAR
Segmentation

Network

Jittered Points1

Points after Drop3

Learnable Point Drop (LPD)
for (2) Point Drop

Clean Data Jittered Data Range Jittered Data

Selective Jittering (SJ)
for (1) Geometric Perturbation

4

2

Depth Selective Jittering 
(DSJ)

Angle Selective Jittering 
(ASJ)

Range Jittering (RJ)

Fig 12. Overall Method.

Input Points



4. Experiments
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● Our method surpasses the previous state-of-the-art on the SemanticSTF dataset.

● No need of precise physics-based simulations.

Main Experiments

4. Experiments

Tab 2. Main Results of Experiments.
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Comparison with Domain Generalization(Adaptation) Methods

4. Experiments

● Specifically, our approach outperforms the previous state-of-the-art method, UniMix.

Tab 3. Comparison with Other Domain Generalization/Adaptation Methods.

Utilize Weather Simulation →

Utilize Real Weather Data →
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Qualitative Results

4. Experiments

Baseline OursPointDR

Baseline OursPointDR

Baseline OursPointDR

Baseline OursPointDR

Dense Fog Light Fog

SnowRain

Fig 13. Qualitative Results. Green(Red) point is true(false) prediction.
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Conclusion

● Identified key degradation factors of adverse weather.

● The first data-centric approach that integrate various weather types and severities.

● Addressed the challenges of synthesizing all specific weather types and severities.



Thank You for Listening!

See You in Poster #149

Project page:

https://engineerjpark.github.io/ECCV2024LiDARWeather/

Code:

https://github.com/engineerJPark/LiDARWeather

E-mail:

jshackist@kaist.ac.kr

https://engineerjpark.github.io/ECCV2024LiDARWeather/
https://github.com/engineerJPark/LiDARWeather
mailto:jshackist@kaist.ac.kr
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Details About LPD

Appendix

● Reward of LPD let point drop degrade or confuse LiDAR segmentation model.

● LPD module uses the same framework & loss as the original DQN did.
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● Point drop, occlusion, and geometric perturbation are also critical factors in SynLiDAR.

Toy Experiments in SynLiDAR

Appendix

Tab A1. Result of Toy Experiments in SynLiDAR.
D1) Point drop  D2) Occlusion  D3) Geometric perturbation  D4) Intensity distortion
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● Performance enhancement in several classes.

● Performance drop in bicycles and motorcycles is due to their sparsity.

Class IoU on SemanticKITTI→SemanticSTF

Appendix

Tab A2. Class IoU on the SemanticKITTI→SemanticSTF.
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● Performance enhancement in several classes.

● Performance drop in motorcycles is due to their sparsity.

Class IoU on SynLiDAR→SemanticSTF

Appendix

Tab A3. Class IoU on the SynLiDAR→SemanticSTF.
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Various Input Representations

Appendix

● Strong performance across various datasets and input representations.

Range image based

Point-voxel based

Tab A4. Results across Various Input Representations.
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Ablation Study

Appendix

● All components contribute to performance enhancement.

● Reasonable performance maintenance in clean weather.

Tab A5. Ablation Study.
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Hyperparameter Ablation Study

Appendix

● Our methods are robust to change of hyperparameter.

Tab A6. Hyperparameter Ablation Study.
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Point Drop Ratio of LPD

Appendix

● LPD drops more points when the distance of points is large.

● Physically feasible drop ratio with respect to real weather.

Tab A7. Point Drop Ratio of LPD Module in Specific Depth Ranges.
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More Qualitative Results

Appendix

Fig A1. Qualitative Results in Dense Fog, SemanticKITTI→SemanticSTF
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More Qualitative Results

Appendix

Fig A2. Qualitative Results in Light Fog, SemanticKITTI→SemanticSTF
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More Qualitative Results

Appendix

Fig A3. Qualitative Results in Rain, SemanticKITTI→SemanticSTF
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More Qualitative Results

Appendix

Fig A4. Qualitative Results in Snow, SemanticKITTI→SemanticSTF
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More Qualitative Results

Appendix

Fig A5. Qualitative Results in Dense Fog, SynLiDAR→SemanticSTF
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More Qualitative Results

Appendix

Fig A6. Qualitative Results in Light Fog, SynLiDAR→SemanticSTF
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More Qualitative Results

Appendix

Fig A7. Qualitative Results in Rain, SynLiDAR→SemanticSTF
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More Qualitative Results

Appendix

Fig A8. Qualitative Results in Snow, SynLiDAR→SemanticSTF
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