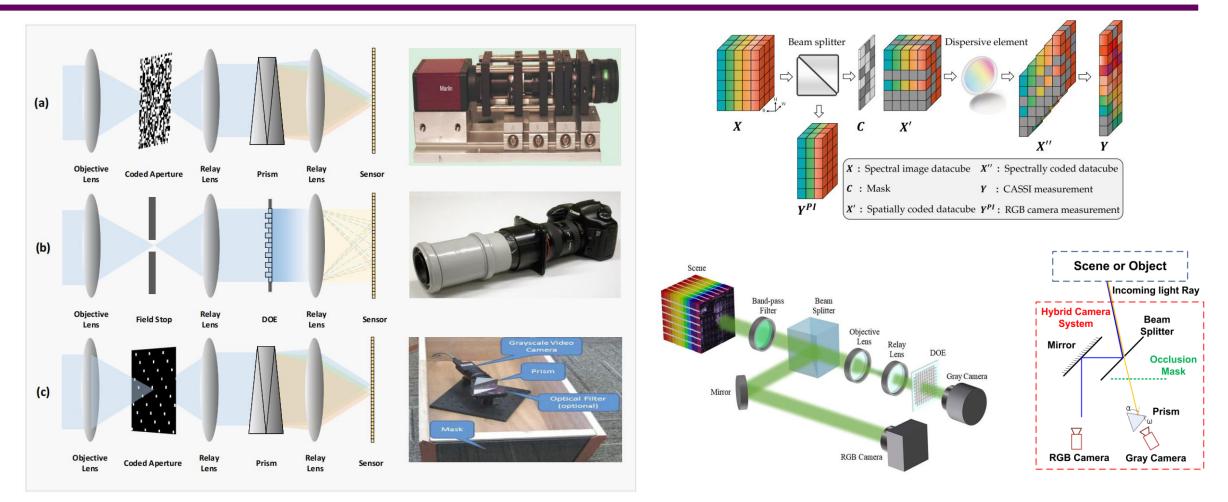
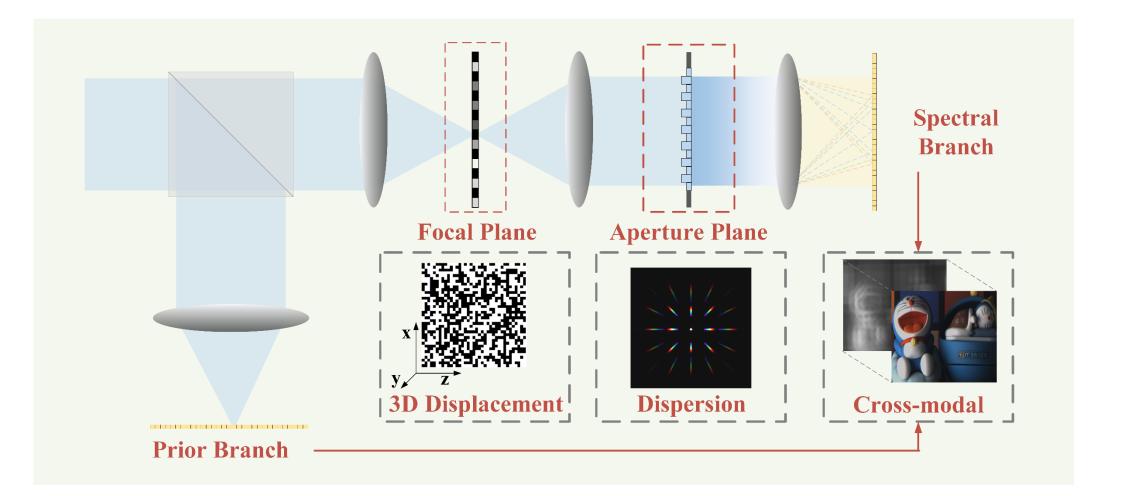


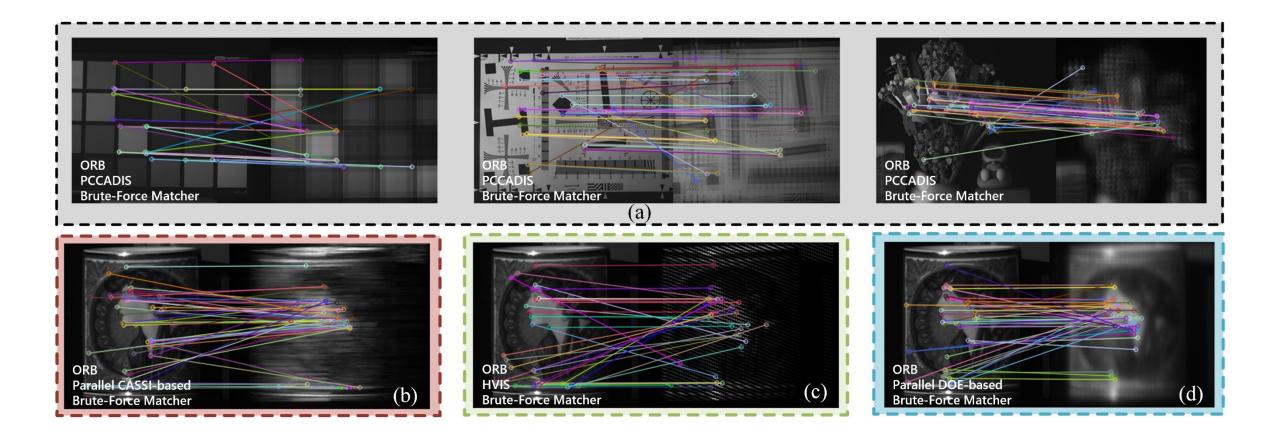
Efficient Snapshot Spectral Imaging: Calibration-Free Parallel Structure with Aperture Diffraction Fusion


Computational Imaging Lab @ Nanjing University

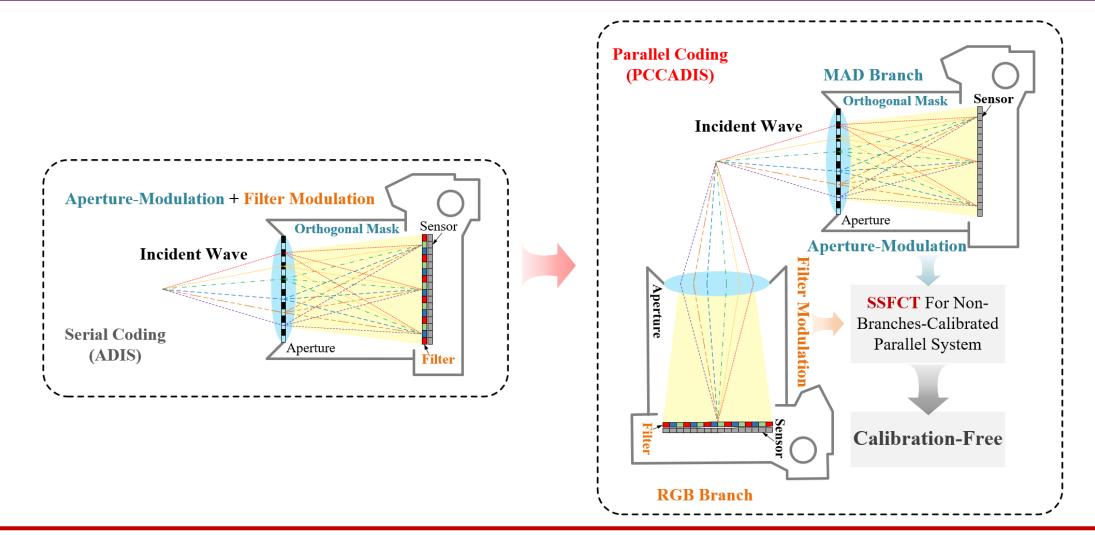
Tao Lv, Lihao Hu, Shiqiao Li, Chenglong Huang, Xun Cao* {Ivtao, liaohaohu, lishiqiao, Chenglong-Huang}@smail.nju.edu.cn {caoxun}@nju.edu.cn


Background

Three core challenges in snapshot spectral imaging: (a) complex structure; (b) Compromised imaging accuracy, and (c) the need for repeated calibrations

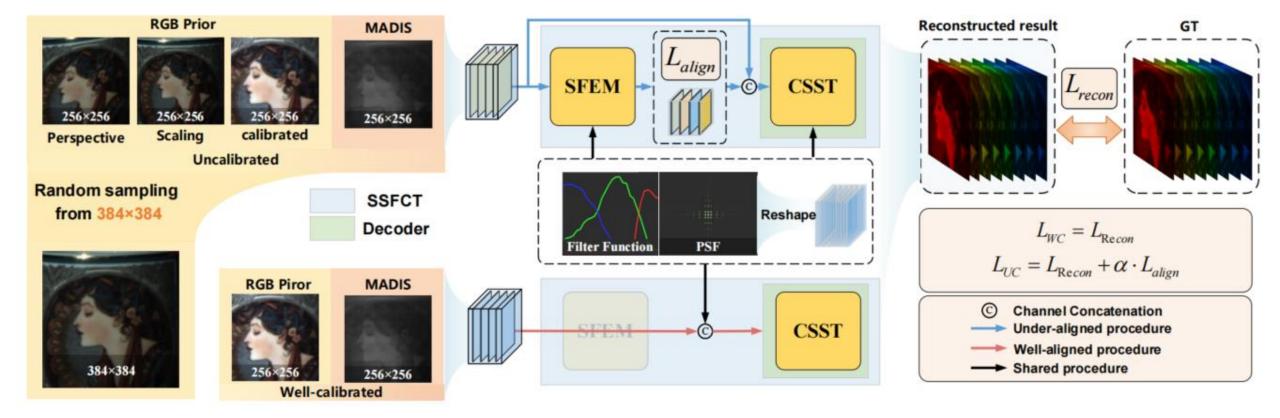

Background

Three main elements to be calibrated in a parallel optical path imaging system

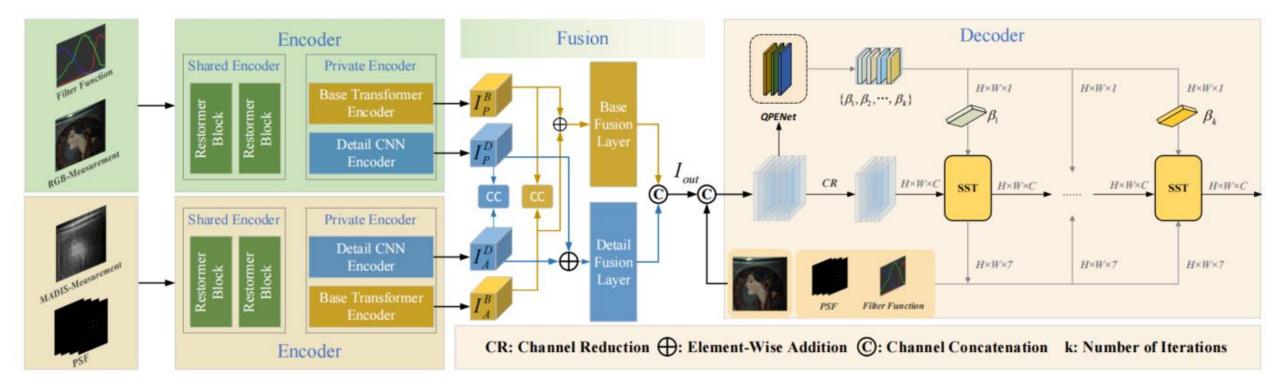


Motivation

Matching of differentiated data obtained from different coded modulation is a difficult problem that cannot be achieved by traditional image registration algorithms


System Overview

The serial coding of ADIS is adapted to parallel coding (PCCADIS). And the fusion and reconstruction of crossmodal images are addressed by algorithmic design that directly skips image alignment


System Overview

We trained the reconstruction algorithm using data randomly sampled from the data in 384*384 resolution as prior information

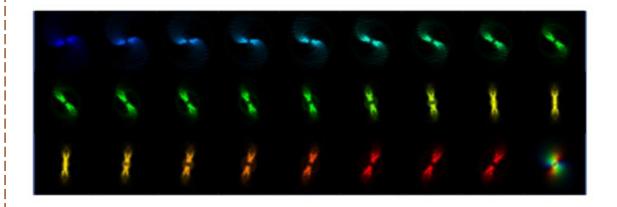
Reconstruction Algorithm

We construct the SSFCT Framework based on CDDFuse and deep unfolding architecture:
 ➢ SFEM: Transformer+CNN Encoder for feature fusion based on MAD measurements;
 ➢ SSFCT Framework: Fusion and reconstruction;

SFEM encodes and guides the fusion of uncalibrated inputs, allowing us to extract matching features from both modalities and use them to recover a high-fidelity data cube

Simulation Experiments

Table 2: Quantitative Comparison of reconstruction results of different algorithms with uncalibrated inputs, Params, FLOPS, PSNR (dB) and SSIM are reported. The PSNR and SSIM of each scene are the mean results of the three different RGB guided images.


Algorithm	Params	GFLOPS	S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	S 10	Avg
UNet [37]	23.29M	4.90	38.60	39.12	36.15	35.38	34.49	34.02	38.32	37.23	35.74	34.82	36.46
			0.970	0.974	0.957	0.910	0.942	0.935	0.968	0.953	0.954	0.947	0.951
Lambda-Net [34]	32.73M	23.29	36.49	37.63	34.46	31.65	33.23	32.77	37.25	36.48	35.59	34.85	35.04
Lamoua-Net [34]	52.751	23.29	0.942	0.956	0.929	0.771	0.907	0.898	0.957	0.944	0.940	0.934	0.918
TSA-Net [33]	44.25M	M 91.47	40.38	40.59	37.42	36.34	37.27	35.68	40.15	38.01	37.31	38.00	38.28
13A-Net [33]	++.23WI		0.972	0.975	0.969	0.927	0.963	0.957	0.979	0.954	0.958	0.972	0.962
MST++ [9]	1.34M	4M 17.57	40.81	40.26	37.87	35.83	35.79	36.55	40.94	39.76	38.56	37.92	38.34
	1.5411		0.984	0.982	0.975	0.927	0.947	0.962	0.981	0.971	0.969	0.974	0.966
Restormer [52]	15.11M	87.54	42.00	42.53	39.51	36.68	36.93	36.78	40.75	40.22	39.31	40.56	39.48
Kestornier [32]		07.54	0.987	0.987	0.980	0.936	0.962	0.968	0.982	0.977	0.978	0.985	0.974
SSFCT-9stg (Ours)	6.62M	73.50	42.67	43.56	40.80	40.89	39.24	40.55	43.99	39.99	40.69	40.93	41.33
551-C1-9stg (Outs)	0.02111	75.50	0.988	0.989	0.985	0.982	0.978	0.981	0.990	0.976	0.979	0.975	0.982

SSFCT-9stg significantly outperforms two recent SOTA methods Restormer and MST++ by 1.85dB and 2.99dB, demonstrating the effectiveness and acceptability of the imaging system

Simulation Experiments

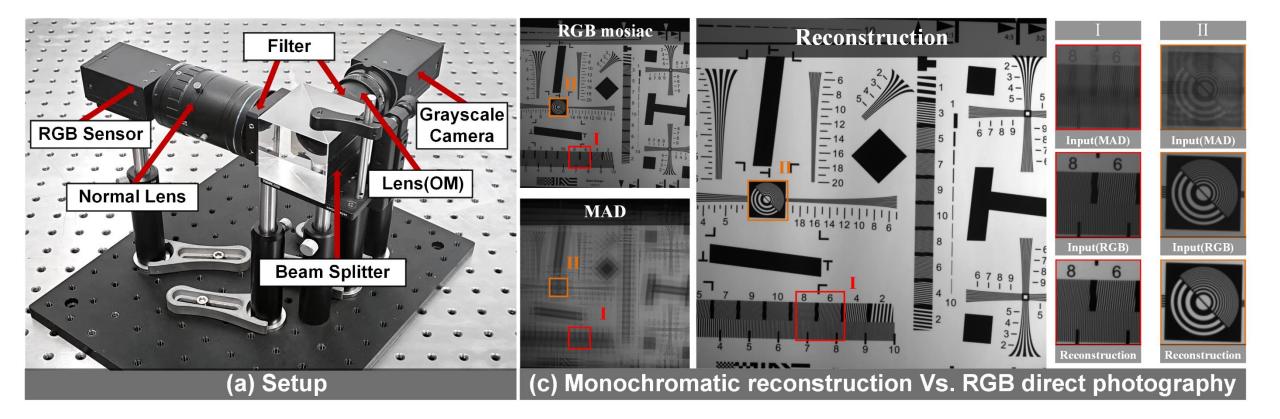
Table 3: Comparisons of ADIS and PCCADIS (PSNR/SSIM)

Methods	lambda-Net	TSA-Net	MST++	Restormer	CSST	SSFCT	Epoches
ADIS	29.62	30.71	32.23	33.29	34.08 0.958		300
	0.860	0.915	0.942	0.948		_	300
	35.04	38.28	38.34	39.48		41.33	150
PCCADIS(UC)	0.918	0.962	0.966	0.974	-	0.982	150
PCCADIS(WC)	36.99	40.01	41.43	41.86	41.97		150
	0.935	0.958	0.984	0.984	0.985	_	130

	ADIS	PCCADIS	DOE-based	Parallel DOE-based
SSFCT / PSNR (dB)	34.08	41.33	36.58	41.79
SSFCT / SSIM	0.958	0.982	0.964	0.984

A comparison of PCCADIS and ADIS proves the effectiveness of the parallel system, and the SOTA performance of the SSFCT algorithm in uncalibration experiments is also demonstrated

Simulation Experiments

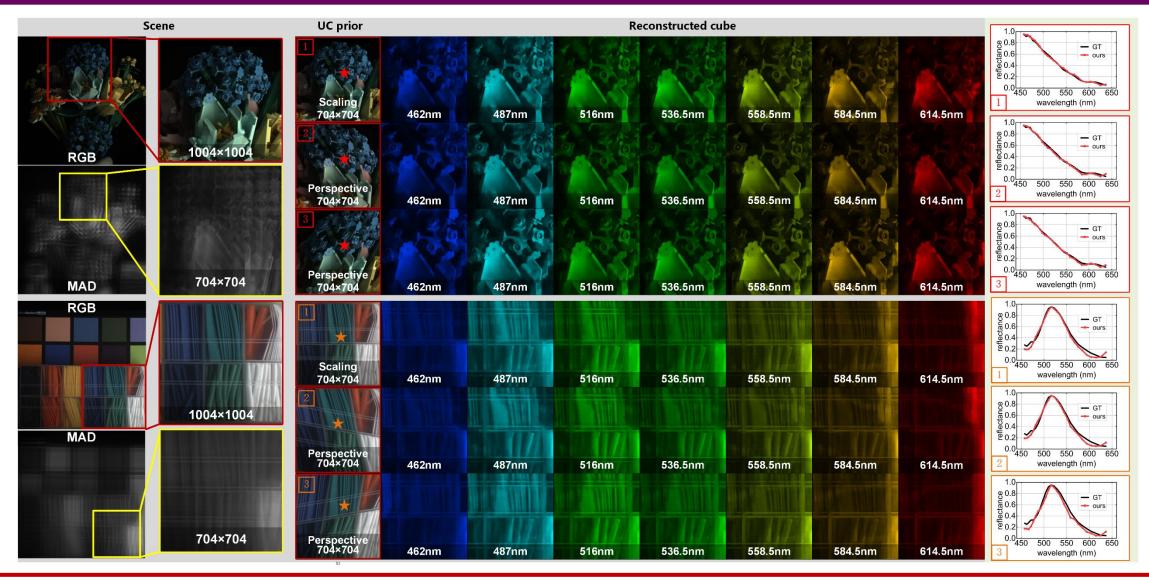

Table 1: Complexity analysis of parallel computational spectral imaging systems. OPS: Optical Path Structure; $Cali_{spa}$: Spatial Calibration of different branches; $Cali_{Disper}$: Dispersion Calibration; $Cali_{PSFs/M}$: PSFs/Mask Calibration; N_{BP} : Necessity of Beam Splitter.

Imaging Method	OPS	$Cali_{spa}$	$Cali_{Disper}$	$Cali_{PSFs/M}$	N_{BP}
PCCADIS+SSFCT	2f+2f	×	×	×	X
prior branch+PMVIS [13]	2f+4f	1	1	1	1
prior branch+CASSI [17, 44]	2f+4f	1	1	1	1
prior branch+CTIS [50]	2f+4f	1	1	1	1
prior branch+DOE-coded [48]	2f+2f	1	X	1	1

Comparison of system complexity and calibration complexity illustrates the sophistication of PCCADS

Real Reconstruction

From the reconstruction results for the resolution targets, PCCADIS can recover a resolution level similar to that of RGB direct imaging


Real Reconstruction

With the well-calibrated experimental setup, PCCADIS recovers the spectral details of the scene with a clear spatial structure

Real Reconstruction

Under uncalibrated mode, PCCADIS can reconstruct accurately and stably for different guided images.

Table 4: Result of ablation on SFEM, L_{UC} and imaging mode

Traning mode	PSNR(dB)	SSIM
$SSFCT+L_{UC}(MAD+RGB)$	37.38	0.959
$SSFCT+L_{Recon}(MAD+RGB)$	36.76	0.951
Decoder+ L_{Recon} (MAD+RGB)	36.33	0.950
Decoder+ L_{Recon} (only RGB)	35.53	0.945

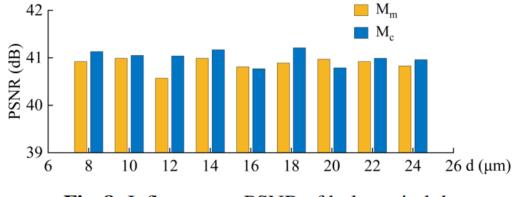


Fig. 8: Influence on PSNR of hole period d.

 Table 5: Comparison of light throughput between PCCADIS and ADIS. (LT: light throughput)

Methods	$ADIS(M_m)$	$ADIS(M_c)$	$Ours(M_m)$	$Ours(M_c)$
LT	$\frac{1}{4} \times \frac{1}{3}$	$\frac{3}{4} \times \frac{1}{3}$	$\frac{1}{2}(\frac{1}{4}+\frac{1}{3})$	$\frac{1}{2}\left(\frac{3}{4}+\frac{1}{3}\right)$
LT	8.3%	25.0%	29.2%	54.2%

Computational Imaging Lab @ Nanjing University

