Omni6D: Large-Vocabulary 3D Object Dataset for Category-Level 6D Object Pose Estimation

Mengchen Zhang^{1,2}, Tong Wu³, Tai Wang², Tengfei Wang², Ziwei Liu⁴, Dahua Lin^{2,3}

¹Zhejiang University, ²Shanghai Artificial Intelligence Laboratory, ³The Chinese University of Hong Kong, ⁴Nanyang Technological University

	_	10	
			_
-	-		

上海人工智能实验室 Shanghai Artificial Intelligence Laboratory

Motivation

□ Category level object 6D pose and size estimation: Given an RGBD image I and the category c of the object instance in the image, estimate the direction R, position T, and size S of the object in three-dimensional space.

Autonomous Driving

Assist in Vehicle Perception and Path Planning

Robot Operation

Improve the Robot's Grasping and Operating Capabilities

Virtual/Augmented Reality

Enhance the Interactivity and Realism of Virtual Objects with the Real Environment

Contribution

□ Limited category numbers

□ Lack of instance diversity within categories

• Overly simplified scenes

□ Lack of realism

NOCS

Contribution

✓ Expansion of object categories

from limited 6 to 166

 Complex scenarios (occlusions, changing lighting conditions, complex backgrounds, and varying viewpoints)

Datasets	Mode	Realism	# Categories	# Instances	$s \ \# \ \mathrm{Images}$
ShapeNet-SRN Cars [22] Sim2Real Cars [22]	RGB RGB	Synthetic Real	1 1	$\begin{array}{c} 3514 \\ 10 \end{array}$	-
CAMERA [40] REAL [40] Wild6D [44] Omni6D	RGBD RGBD RGBD RGBD	Synthetic Real Real Real-Scanned	6 6 5 166	1085 42 1722 4,688	$0.3M \\ 8k \\ 1M \\ 0.8M$

Omni6D vs Others

Omni6D

(a) Challenges from occluded object

(b) Challenges from bottom views

Symmetry statistics

Symmetry-Aware Evaluation

Algorithm 1 Compute Our Symmetry-Aware Metric L_s

1: **procedure** SYMMETRIC METRIC (L, R, n_x, n_y, n_z) 2: 3: $\Theta_0 = \{0^\circ\}$ $\Theta_2 = \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}\$ 4: 5: 6: 7: 8: 9: $\Theta_3 = \{0^\circ, 180^\circ\}$ // Rotations around Sym-1 axis need not be considered. $c = \text{count}(1 \text{ occurrences in } \{n_x, n_y, n_z\})$ if $c \ge 2$ then // The object is a sphere. $L_s = L(R^*, R)$ else if c == 1 then // Rotations around Sym-1 axis can be disregarded. Without loss of generality, assume $n_x == 1$. 10: $L_s = \min_{\theta_y \in \Theta_{n_y}, \theta_z \in \Theta_{n_z}} L(R^*_{\theta_y, \theta_z}, R)$ 11: else if c == 0 then // Simply enumerate all cases. 12: $L_s = \min_{\theta_x \in \Theta_{n_x}, \theta_y \in \Theta_{n_y}, \theta_z \in \Theta_{n_z}} L(R^*_{\theta_x, \theta_y, \theta_z}, R)$ 13:end if 14: return L_s 15: end procedure

Benchmark

Table 2: Category-level performance on Omni6D dataset. Models are trained on Omni6D_{train} and tested on Omni6D_{test}. Instances within each category in the test set are unseen during training, substantiating the algorithms' capacity to generalize within individual categories under large-vocabulary settings. Bold and <u>underlined</u> results indicate the best and second-best performers.

Methods	Network	$ IoU_{50} $	IoU_{75}	$ 5^{\circ}2cm$	$5^{\circ}5cm$	$10^{\circ}2cm$	$10^{\circ}5cm$	$ 5^{\circ}$	10°	2cm	5cm
SPD [34]	implicit	44.56	20.37	7.55	9.56	14.76	19.23	10.68	21.02	37.49	70.09
SGPA [6]	implicit	36.34	14.44	4.78	6.84	10.13	15.03	8.49	17.73	25.57	59.18
DualPoseNet [20]	hybrid	58.84	25.49	8.28	9.30	17.26	19.05	9.38	19.18	73.82	96.37
RBP-Pose [46]	hybrid	35.92	4.66	0.37	0.60	0.53	0.80	0.75	0.96	39.73	83.55
GPV-Pose [10]	$\operatorname{explicit}$	15.28	0.26	0.10	0.70	0.14	0.96	2.25	2.96	5.31	33.70
HS-Pose [47]	$\operatorname{explicit}$	62.65	23.02	4.26	4.85	10.49	11.61	4.96	11.75	80.93	97.78

GT

SPD

SPGA

DualPoseNet

RBP-Pose

GPV-Pose

HS-Pose

Benchmark

Table 3: Category-level performance on unseen categories. Models are trained on $Omni6D_{train}$ and tested on $Omni6D_{out}$. Categories in the test set never appear in the training set, validating the algorithms' ability to generalize across categories.

Methods	Network	$ IoU_{50} $	IoU_{75}	$5^{\circ}2cm$	$5^{\circ}5cm$	$10^{\circ}2cm$	$10^{\circ}5cm$	$ 5^{\circ}$	10°	2cm	5cm
SPD [34]	implicit	7.56	0.95	0.18	0.40	0.80	1.65	0.65	2.36	8.88	40.59
SGPA [6]	implicit	7.05	0.60	0.07	0.28	0.19	0.82	0.53	1.69	3.87	28.28
DualPoseNet [20]	hybrid	36.85	12.06	3.24	3.37	8.04	8.51	3.39	8.64	78.00	98.60
RBP-Pose [46]	hybrid	26.18	1.95	0.01	0.02	0.02	0.03	0.02	0.03	16.74	43.06
GPV-Pose [10]	$\operatorname{explicit}$	10.97	0.14	0.03	0.18	0.12	0.57	0.30	1.07	7.14	41.30
HS-Pose [47]	$\operatorname{explicit}$	36.75	8.92	1.54	1.66	4.67	5.16	1.75	5.38	79.95	98.27

DualPoseNet

HS-Pose

Omni6D-Real

- ✓ Omni6D-Real, comprising 30 scenes, 39 categories, 73 instances, and 1k images
- ✓ We captured RGBD images with Azure Kinect DK and preprocessed them using SAM for object masks and ICP for point cloud registration.

Omni6D: Large-Vocabulary 3D Object Dataset for Category-Level 6D Object Pose Estimation

Mengchen Zhang^{1,2}, Tong Wu³, Tai Wang², Tengfei Wang², Ziwei Liu⁴, Dahua Lin^{2,3}

¹Zhejiang University, ²Shanghai Artificial Intelligence Laboratory, ³The Chinese University of Hong Kong, ⁴Nanyang Technological University

	_	10	
			_
-	-		

上海人工智能实验室 Shanghai Artificial Intelligence Laboratory

