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Motivation

Assist in Vehicle Perception and 
Path Planning

Autonomous Driving

Improve the Robot's Grasping 
and Operating Capabilities

Robot Operation

Enhance the Interactivity and 
Realism of Virtual Objects with 

the Real Environment

Virtual/Augmented Reality

p Category level object 6D pose and size estimation: Given an RGBD image I and the category c of the object 

instance in the image, estimate the direction R, position T, and size S of the object in three-dimensional space.



p Limited category numbers

p Lack of instance diversity within categories

p Overly simplified scenes

p Lack of realism

Contribution

NOCS



ü Expansion of object categories 

from limited 6 to 166

ü Complex scenarios (occlusions, 

changing lighting conditions, 

complex backgrounds, and 

varying viewpoints)

Contribution

Omni6D

Omni6D vs Others

Omni6D 3

Table 1: Comparisons between Omni6D and existing datasets. Omni6D sig-
nificantly extends the range of everyday object categories and instances.

Datasets Mode Realism # Categories # Instances # Images

ShapeNet-SRN Cars [22] RGB Synthetic 1 3514 -
Sim2Real Cars [22] RGB Real 1 10 -

CAMERA [40] RGBD Synthetic 6 1085 0.3M
REAL [40] RGBD Real 6 42 8k
Wild6D [44] RGBD Real 5 1722 1M
Omni6D RGBD Real-Scanned 166 4,688 0.8M

Including a broader range of categories, our dataset offers a more compre-
hensive and challenging evaluation benchmark for category-level 6D object pose
estimation. Utilizing Omni6D, we train and analyze existing algorithms, initi-
ating a profound exploration of the challenges and vital elements involved in
category-level estimation within large-vocabulary categories. Additionally, we
assess these algorithms’ capability to generalize across categories, and carry out
a category-wise analysis. Experiments show that our dataset presents a more
challenging benchmark for 6D pose estimation, highlighting the need for more
robust and generalized pose estimation approaches. As an initial attempt, we
present a finetuning strategy that assists in broadening the scope of existing ap-
proaches from a limited range of categories to a broader vocabulary. Moreover,
we conduct an analysis of the domain gap between our dataset and real-world
dataset, emphasizing the benefits of their combined use.

Our dataset will be publicly available to the research community, which will
foster future research on more practical and robust 6D pose estimation algo-
rithms and pave the way for broader applications.

2 Related Work

Existing work on category-level 6D object pose estimation can be generally
divided into two types. After extracting features from images or point clouds,
they compute Rotation, Translation, and Size (RTS) either through implicit
point correspondence or explicit regression.
Existing Datasets. The most commonly used dataset for category-level 6D
object pose estimation is NOCS [40], comprising both the synthetic CAMERA
dataset and the real-world REAL dataset. CAMERA includes 300k RGBD im-
ages of 31 indoor scenes with 1,085 object instances across 6 categories, while
REAL mirrors the categories in CAMERA and includes 8k RGBD images cap-
turing 42 instances in 18 real scenes. Wild6D [44] consists of 5,166 videos with
1.1 million images over 1,722 object instances in 5 categories. ShapeNet-SRN
Cars dataset and Sim2Real Cars dataset proposed in iNerf [22] both exclusively
include a single car category. The former includes 3,514 instances derived from
ShapeNet cars, while the latter is extracted from videos capturing 10 distinct un-
seen car models. These datasets are limited by their narrow range of categories,
hindering their ability to generalize broadly. Additionally, most training images
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(a) Challenges from occluded object (b) Challenges from bottom views

Fig. 4: Challenges from Omni6D. (a) Algorithms trained on Omni6D can overcome
challenges in estimating poses for occluded object instances. The left shows an occluded
object instance at the edge of the image, while the right image shows an object instance
obstructed by other objects. (b) Algorithm trained on Omni6D can accurately estimate
poses with only the lower half or bottom appearance of an object. The green and red
colors respectively denote the ground truth and predicted 3D bounding boxes. The blue
and orange lines on the boxes separately highlight the intersecting lines of the frontal
face and the top face of the two 3D bounding boxes, while the darker lines indicate the
bottom of the bounding boxes.

classes included to meet the desired total. Fig. 6a presents the specific categories
included in clsn and their respective sizes relative to each other. Omni6Dout

is utilized as an additional test set to measure our algorithm’s inter-category
generalization. This dataset, constructed similarly to Omni6D, encompasses 52
models spanning 17 categories unseen in Omni6D, along with 4762 images. For
additional details on datasets, please refer to the appendix.
Details. All experiments are carried out on a server equipped with an Intel(R)
Xeon(R) Gold 6248R CPU @ 3.00GHz and an NVIDIA A100-SXM4-80GB GPU.
We maintain consistency in parameters and strategies throughout training, en-
suring uniformity in our experiment environment. Given the challenges of seman-
tic classification with a large vocabulary, we use ground truth masks to mitigate
the impact of low-quality classification on pose estimation results.

4.2 Symmetry-Aware Evaluation

Basic Evaluation Metrics. We utilize the average accuracy of Intersection over
3D Union (IoU) [14] in object detection, and n�m cm in pose estimation. We
further decompose n�m cm [19,31] to individually evaluate the model’s predictive
error n� for pose and m cm for translation. For these three types of errors, the
thresholds considered are {50%, 75%}, {5�, 10�} and {2 cm, 5 cm} [3, 30, 42].
Additionally, we set a detection threshold for objects requiring at least a 10%
overlap between predicted and ground-truth bounding boxes.
Our Symmetry-Aware Metrics. Due to NOCS’s limited categories, tradi-
tional algorithms mainly handle basic symmetry cases, such as rotational sym-
metry around the y-axis. However, Omni6D has a wider range of objects with
different rotational invariances across multiple axes. Fig. 6 provides symmetry
statistics for Omni6D objects. To alleviate this issue, we propose a symmetry-
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Algorithm 1 Compute Our Symmetry-Aware Metric Ls

1: procedure symmetric_metric(L, R, nx, ny , nz)
2: ⇥0 = {0�}
3: ⇥2 = {0�, 90�, 180�, 270�}
4: ⇥3 = {0�, 180�} // Rotations around Sym-1 axis need not be considered.
5: c = count(1 occurrences in {nx, ny , nz})
6: if c � 2 then // The object is a sphere.
7: Ls = L(R⇤, R)
8: else if c == 1 then // Rotations around Sym-1 axis can be disregarded.
9: Without loss of generality, assume nx == 1.
10: Ls = min✓y2⇥ny ,✓z2⇥nz

L(R⇤
✓y,✓z

, R)

11: else if c == 0 then // Simply enumerate all cases.
12: Ls = min✓x2⇥nx ,✓y2⇥ny ,✓z2⇥nz

L(R⇤
✓x,✓y,✓z

, R)

13: end if

14: return Ls

15: end procedure

aware metric. Unlike prior works focusing solely on the y-axis, our method con-
siders rotation symmetry around all three axes.

We define the relevant variables as follows: Ls denotes our symmetry-aware
metric, L denotes the original metric. R stands for the ground truth rotation
matrix, while R⇤ represents the predicted rotation matrix. R⇤

✓x,✓y,✓z
corresponds

to the predicted rotation matrix after sequentially rotating by ✓x, ✓y, and ✓z
degrees around the xyz axes. The rotational invariance cases around the x, y,
and z axes are denoted as Sym-nx, Sym-ny, and Sym-nz, where nx, ny, and nz

are the respective rotation parameters. Objects that align with Sym-n around
an axis maintain their original shape when rotated by an angle from ⇥n.

Since the Euler angles are compact [13], the most straightforward approach
is to determine the category of rotational invariance for each axis {x, y, z}
sequentially, as mentioned in 3.2. To simplify computations, we set ⇥0 = {0�},
⇥1 = {0�, 1�, ..., 359�}, ⇥2 = {0�, 90�, 180�, 270�}, ⇥3 = {0�, 180�}. We can
define Ls as Ls = min✓x2⇥nx ,✓y2⇥ny ,✓z2⇥nz

L(R⇤
✓x,✓y,✓z

, R).
However, due to the singularity of Euler angles [13], we can simplify the above

rotation transformation. The pseudo-code implementation of our Symmetry-
Aware Evaluation is provided in Algorithm 1. It allows us to simplify what was
originally at most 3603 computations to a maximum of only 43 computations.

4.3 Large-Vocabulary 6D Pose and Size Estimation

Performance on Omni6D. We present results of algorithms [6, 10, 34, 46, 47]
trained on Omni6Dtrain and tested on Omni6Dtest. We compare their quantita-
tive results in Tab. 2 and their qualitative results in Fig. S10 in Appendix. The
performance disparity among algorithms for category-level 6D object pose esti-
mation becomes markedly pronounced when applied to large-vocabulary datasets,
in contrast to the more consistent performance previously observed on the Real
and CAMERA datasets [40]. This highlights the inherent strengths and weak-
nesses across various model structures.

This observation suggests the potential importance of our large-vocabulary
dataset in uncovering the relative performance of different models. It appears
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Table 2: Category-level performance on Omni6D dataset. Models are trained
on Omni6Dtrain and tested on Omni6Dtest. Instances within each category in the test
set are unseen during training, substantiating the algorithms’ capacity to generalize
within individual categories under large-vocabulary settings. Bold and underlined re-
sults indicate the best and second-best performers.

Methods Network IoU50 IoU75 5�2cm 5�5cm 10�2cm 10�5cm 5� 10� 2cm 5cm

SPD [34] implicit 44.56 20.37 7.55 9.56 14.76 19.23 10.68 21.02 37.49 70.09
SGPA [6] implicit 36.34 14.44 4.78 6.84 10.13 15.03 8.49 17.73 25.57 59.18
DualPoseNet [20] hybrid 58.84 25.49 8.28 9.30 17.26 19.05 9.38 19.18 73.82 96.37
RBP-Pose [46] hybrid 35.92 4.66 0.37 0.60 0.53 0.80 0.75 0.96 39.73 83.55
GPV-Pose [10] explicit 15.28 0.26 0.10 0.70 0.14 0.96 2.25 2.96 5.31 33.70
HS-Pose [47] explicit 62.65 23.02 4.26 4.85 10.49 11.61 4.96 11.75 80.93 97.78

Table 3: Category-level performance on unseen categories. Models are trained
on Omni6Dtrain and tested on Omni6Dout. Categories in the test set never appear in
the training set, validating the algorithms’ ability to generalize across categories.

Methods Network IoU50 IoU75 5�2cm 5�5cm 10�2cm 10�5cm 5� 10� 2cm 5cm

SPD [34] implicit 7.56 0.95 0.18 0.40 0.80 1.65 0.65 2.36 8.88 40.59
SGPA [6] implicit 7.05 0.60 0.07 0.28 0.19 0.82 0.53 1.69 3.87 28.28
DualPoseNet [20] hybrid 36.85 12.06 3.24 3.37 8.04 8.51 3.39 8.64 78.00 98.60
RBP-Pose [46] hybrid 26.18 1.95 0.01 0.02 0.02 0.03 0.02 0.03 16.74 43.06
GPV-Pose [10] explicit 10.97 0.14 0.03 0.18 0.12 0.57 0.30 1.07 7.14 41.30
HS-Pose [47] explicit 36.75 8.92 1.54 1.66 4.67 5.16 1.75 5.38 79.95 98.27

that the increased complexity of the dataset could push model architectures
to their theoretical limits, possibly revealing intrinsic characteristics otherwise
obscured in less complex scenarios. For example, SPD, SGPA is particularly pro-
ficient in predicting rotation, and SPD achieves the highest score in n�m cm.
This could be due to its implicit network’s propensity for generating more re-
liable rotational forecasts. Meanwhile, DualPoseNet and HS-Pose provide more
accurate predictions for translation and score higher in IoU. This could be asso-
ciated with the characteristic of models with explicit networks to produce better
translations and size estimates.

Our large-vocabulary dataset, encompassing a broad spectrum of shapes and
appearances, enables a comprehensive evaluation of diverse category-level pose
estimation methods. This serves not only as a robust test of an algorithm’s gen-
eralizability but also as a valuable tool in understanding the advantages offered
by different algorithmic structures.
Generalization Performance. We evaluate algorithms on Omni6Dout to as-
sess their inter-category generalization capabilities. The outcomes are presented
in Tab. 3. Notably, DualPoseNet and HS-Pose emerged as superior performers,
outclassing others across all metrics, thereby demonstrating excellent generaliza-
tion abilities. Contrastingly, implicit methods including SPD and SPGA exhib-
ited marked limitations. Qualitative results are shown in Fig. S11 in Appendix.

Drawing parallels with the observations from Tab. 2, we found that metrics
such as translation and IoU were relatively easier to excel in, suggesting superior
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Table R2: Comparisons between Omni6D, Omni6D-xl, Omni6D-Real and
existing datasets. Our datasets significantly extend the range of everyday object
categories and instances.

Datasets Mode Realism # Categories # Instances # Images

ShapeNet-SRN Cars [22] RGB Synthetic 1 3514 -
Sim2Real Cars [22] RGB Real 1 10 -

CAMERA [40] RGBD Synthetic 6 1085 0.3M
REAL [40] RGBD Real 6 42 8k
Wild6D [44] RGBD Real 5 1722 1M

Omni6D-Real RGBD Real 39 73 1k
Omni6D RGBD Real-Scanned 166 4,688 0.8M
Omni6D-xl RGBD Real-Scanned 419 15,959 1.1M

Take RGBD images Anotation Evaluation

Azure Kinect DK SAM & ICP Model Output

Examples

Fig. S5: Constructing Omni6D-Real: pipeline & examples.

refined the derived bboxes through manual adjustments. This iterative process,
where ICP serves as an aid to manual annotation, ensures the accuracy of 3D
bboxes across all frames.
Evaluation. We evaluated the performance of DualPoseNet [20] on our pro-
cessed real-world dataset. Despite being trained solely on simulated data, the
model exhibited excellent performance on real-world tasks. This demonstrates
to a certain extent that our real-scanned 3D models can minimize the gap be-
tween synthetic and real images.

E Additional Experimental Details

E.1 Experimental Settings

All experiments are conducted on a server equipped with 96 Intel(R) Xeon(R)
Gold 6248R CPUs @ 3.00GHz and 8 NVIDIA A100-SXM4-80GB GPUs. We
ensure consistency in all parameters and strategies throughout training, thereby
maintaining uniformity in our experimental environment. For our baseline model,
we adhere to the same parameters as provided by the original authors, with

Dataset     Omni6D-Real
ü Omni6D-Real, comprising 30 scenes, 39 categories, 73 instances, and 1k images

ü We captured RGBD images with Azure Kinect DK and preprocessed them using SAM for object masks and 

ICP for point cloud registration. 
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