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Abstract. Due to the difficulty of collecting real paired data, most ex-
isting desmoking methods train the models by synthesizing smoke, gen-
eralizing poorly to real surgical scenarios. Although a few works have
explored single-image real-world desmoking in unpaired learning man-
ners, they still encounter challenges in handling dense smoke. In this
work, we address these issues together by introducing the self-supervised
surgery video desmoking (SelfSVD). On the one hand, we observe that
the frame captured before the activation of high-energy devices is gen-
erally clear (named pre-smoke frame, PS frame), thus it can serve as
supervision for other smoky frames, making real-world self-supervised
video desmoking practically feasible. On the other hand, in order to
enhance the desmoking performance, we further feed the valuable in-
formation from PS frame into models, where a masking strategy and
a regularization term are presented to avoid trivial solutions. In addi-
tion, we construct a real surgery video dataset for desmoking, which
covers a variety of smoky scenes. Extensive experiments on the dataset
show that our SelfSVD can remove smoke more effectively and efficiently
while recovering more photo-realistic details than the state-of-the-art
methods. The dataset, codes, and pre-trained models are available at
https://github.com/ZcsrenlongZ/SelfSVD.

Keywords: Laparoscopic Surgery Desmoking · Video Desmoking · Self-
Supervised Learning

1 Introduction

Laparoscopy is employed to capture videos of the surgical sites to aid surgeons’
decision-making, and it has found extensive application in the medical field [39].
However, during the surgery, the activation of high-energy devices (e.g ., elec-
trocautery and ultrasonic scalpel) leads to the destruction and vaporization of
proteins and fats, as well as the evaporation of liquid water, inevitably causing

ar
X

iv
:2

40
3.

11
19

2v
2 

 [
cs

.C
V

] 
 1

5 
A

ug
 2

02
4

https://github.com/ZcsrenlongZ/SelfSVD


2 R.Wu et al.

(a) Surgical smoke and clean reference.
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(b) Atmospheric haze and clean reference.

Fig. 1: The comparison of surgical smoke in (a) and atmospheric haze in (b). Degraded
images are in the top row and their clean reference images are in the bottom row.

smoke [73]. The smoke may obscure specific tissue details, consequently dimin-
ishing the quality of laparoscopic imaging and impeding surgeons in making
informed judgments [1]. Since it cannot be easily and quickly removed in vivo,
post-processing laparoscopic images for desmoking [18] has become an effective
and convenient manner to assist surgeons in observing the surgical sites clearly.

It is worth noting that although surgical smoke and atmospheric haze are
somewhat similar in conformation, they are not exactly the same. As shown
in Fig. 1, the latter is usually locally homogeneous and follows the atmospheric
scattering model, while the former is difficult to physically simulate and contains
more diverse situations, such as mist, droplets, and streaks. Consequently, the
pre-trained dehazing models [5,9,16,19,29] are generally ineffective for desmok-
ing. It is significant to give deliberate attention to both data and methods tai-
lored for surgical smoke removal.

Recently, several attempts [36,40,59,60,71] have been made towards desmok-
ing, while still facing some challenges. In this task, collecting paired data is
difficult and even infeasible. To circumvent this problem, most existing meth-
ods employ a 3D graphics rendering engine [8, 23] to generate simulated smoky
images [8, 49, 60] and videos [51]. However, the models trained on the syn-
thetic data do not generalize well in real surgical scenarios, due to the do-
main gap between the synthetic smoke and the real-world one. In addition, some
works [24, 43, 50, 53, 57] adopt unpaired learning manners [17, 74] for real-world
single-image smoke removal. But they are unsatisfactory in handling dense smoke
due to the inherent ill-posed nature. Additionally, few real-world video desmok-
ing methods are explored.

This work aims to bring surgery video desmoking into the real world, which
is more practical significance. Actually, sufficiently leveraging surgery video has
the potential to address both the lack of real-world paired data and limited per-
formance problems. On the one hand, the frames captured before the activation
of high-energy devices usually have less smoke and similar contents as subsequent
smoky ones. We designate the almost clear frame as a pre-smoke (PS) frame.
PS frame can provide effective supervision information for smoky frames. Thus,
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its reasonable utilization will make self-supervised real-world video desmoking
feasible. On the other hand, the surgical smoke level fluctuates over time, either
intensifying or diminishing. The neighboring frames may be complementary to
the current one in smoke removal. Thus, video desmoking is expected to outper-
form single-image desmoking significantly in alleviating ill-posed problems.

Specifically, we propose a novel self-supervised surgery video desmoking (Self-
SVD) method in this work. On the one hand, we utilize PS frame as misaligned
supervision for smoky ones. In order to calculate the loss function between
desmoking output and supervision accurately, a pre-trained optical flow esti-
mation network (e.g ., PWC-Net [54]) is deployed to align the output with PS
frame. On the other hand, PS frame is also available during the test stage, and is
particularly important for handling complex and dense smoke in the real world.
Thus, we further feed PS frame into models to help recover more details. Unfor-
tunately, such a manner can easily lead to trivial solutions. To address this issue,
we introduce a masking strategy and a regularization term. Besides, we suggest
enhancing PS frame as better supervision by the above pre-trained SelfSVD
model, and then taking it to fine-tune the model for improving visual effects.

We note that there is a dearth of real-world surgery video datasets for
desmoking. In order to fill this gap, we collect multiple laparoscopic videos
from professional hospitals and construct a laparoscopic surgery video desmok-
ing (LSVD) dataset, which holds promise to benefit future studies. Extensive
experiments are conducted on the dataset. The results show that our SelfSVD
achieves better results than state-of-the-art methods in smoke removal and fine-
scale detail recovery. Furthermore, we also design a lightweight model that can
be inferred in real-time.

The contributions can be summarized as follows:

– We suggest utilizing the internal characteristics of real-world surgery videos
for effective self-supervised video desmoking, and propose a SelfSVD solu-
tion, in which the pre-smoke (PS) frame serves as an unaligned supervision.

– We propose to take PS frame as an additional input to further improve
desmoking performance, where a masking strategy and a regularization term
are introduced to prevent trivial solutions.

– We construct a real-world laparoscopic surgery video desmoking (LSVD)
dataset. Extensive experiments on the dataset demonstrate that our SelfSVD
outperforms the state-of-the-art methods.

2 Related Work

2.1 Supervised Desmoking

Several studies [40, 55, 58–60, 71, 75] have endeavored to address the surgical
smoke removal problem. Traditional approaches [55, 58, 75] estimate the trans-
mission components based on the atmospheric scattering model, but easily lead
to color and structure artifacts. Later works [36,40,59,60,71] adopt learn-based
manners and design various networks based on convolutional neural networks
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(CNN) and vision transformers [13]. For example, Lin et al . [36] and Ma et
al . [40] modify U-net [48] architecture for surgical desmoking. Wang et al . [59]
propose an encoder-decoder architecture with a Laplacian image pyramid de-
composition strategy. Wang et al . [60] employ Swin Transformer blocks [35] to
enhance feature extraction. Zheng et al . [71] further develop a system jointly
detecting and removing surgical smoke. However, these methods generally sim-
ulate surgery smoke for training. Due to the domain gap between the synthetic
smoke and the real-world one, they can’t generalize well to real surgery scenes.

2.2 Supervised Dehazing

Dehazing [5,11,19,20,29,30,37,45,47,63,64,67,72] is of great relevance to surgi-
cal desmoking, which aims to recover clean components from hazy ones affected
by adverse weather conditions. Li et al . [29] reformulate the atmospheric scat-
tering model and propose AODNet for image dehazing. UHD [63] introduces
the infinite approximation of Taylor’s theorem with Laplacian pyramid pattern.
DeHamer [19] further combine CNN [48] and vison Transformer [13] together
for performance improvement. Compared to the above single-image methods,
video ones [30,37,47,64,67,67] can leverage temporal clues between consecutive
frames for more effective restoration. Li et al . [30] first build an united video
detection and dehazing framework that focuses on temporal information fusion.
Ren et al . [47] incorporate global semantic priors for smooth transmission map
estimation. Recently, MAPNet [64] explores physical haze priors to guide spa-
tial information extraction and proposes a spatial-temporal alignment strategy
to guide temporal features aggregation, achieving state-of-the-art performance.
However, employing their pre-trained models directly does not produce satisfac-
tory desmoking results due to the discrepancy between atmospheric haze and
surgical smoke. Moreover, the lack of real-world paired data severely restricts
the possibility of starting training from scratch. In this work, we propose a self-
supervised framework for video desmoking (SelfSVD) to address these issues.

2.3 Unsupervised Desmoking and Dehazing

In contrast to supervised methods, unsupervised ones [8, 9, 15, 16, 24, 31–33, 43,
50, 53, 57, 65, 66, 70, 73] can be trained without paired supervision. For surgical
smoke removal, Cyclic-DesmokeGAN [57] proposes a real-world image desmoking
model based on CycleGAN [74]. Desmoke-LAP [43] and DCP-Pixel2Pixel [50]
introduce dark channel prior [21] into loss and network design, respectively. MS-
CycleGAN [53] adapts a model pre-trained on synthetic data to real-world ones.

Apart from the above unsupervised desmoking methods, unsupervised dehaz-
ing ones [15, 31–33,65, 66, 70] are also widely explored. YOLY [31] and ZID [32]
perform dehazing in a zero-shot manner by disentangling the hazy image into the
clean component and other ones. RefinetNet [70], DistentGAN [65], and USID-
Net [33] build their models under GAN [17] framework. D4 [66] converts the
transmission map estimation into density and depth image prediction, achiev-
ing better results. CycleDehaze [15] introduces a Laplacian pyramid network to
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ℒ𝑟𝑒𝑐  (Eq. (5)) and 

ℒ𝐺𝐴𝑁 (Eq. (11))
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Fig. 2: The illustration of processing the i-th smoky frame Si. PS frame (Sps) is taken
as both supervision and reference (Ref) input. A masking strategy with the masked-ref
generator as shown in Fig. 4 and a regularization term as Eq. (10) are introduced to
prevent trivial solutions. Hi−1 is the temporal features from previous frames and Hi

is the temporal features for subsequent ones.

handle high-resolution images efficiently. However, these methods suffer from un-
stable training and fail to process dense smoke. In contrast, our SelfSVD enables
more stable and finer-scale restoration by sufficiently utilizing pre-smoke frames.

3 Proposed Method

We first describe the approach towards self-supervised learning, i.e., taking pre-
smoke (PS) frame as supervision in Sec. 3.1. Then we detail how to take PS
frame as reference input and introduce the solutions to prevent trivial solutions
in Sec. 3.2. Next, we introduce the way to enhance PS frame as better supervision
for improving visual effects in Sec. 3.3. Finally, the details about the network
architecture and learning objective are provided in Sec. 3.4.

3.1 Taking PS Frame as Supervision

Given a smoky video consisting of N frames {Si}Ni=1, video desmoking aims to
restore the corresponding clean components {Îi}

N

i=1 with temporal clues, i.e.,

{Îi}
N

i=1 = D({Si}Ni=1;ΘD), (1)

where D denotes the video desmoking model with the parameter ΘD. However,
the paired smoky-clean videos are difficult to acquire in the real world. Several
studies [40, 55, 58–60, 71, 75] utilize synthetic data for training, but the domain
gap between synthetic smoke and real one hinders their effective applications
in the real world. A few single-image unpaired methods [24, 43, 50, 53, 57] are
explored to overcome this issue, but their training is less stable and their ill-
posed nature makes them less effective in processing dense smoke. In contrast to
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(a) Smoky Frame (b) Aligned  Ref (c) w/o  Ref (d) w/  Ref (e) Clean Target

Fig. 3: Examples of trivial solutions. When inputting PS frame as Ref naively, the
imperfect optical flow between Ref and the smoky frame leads to trivial solutions, as
indicated by yellow arrows. The same positions are marked with yellow lines.

these approaches, we propose to utilize the internal characteristics of real-surgery
video for self-supervised video desmoking to address these issues together, as
shown in Fig. 2. Specifically, we note that the pre-smoke frame (PS frame, Sps)
is clearer than subsequent smoky ones and can be regarded as their supervision.

Motivated by this, we introduce SelfSVD to achieve self-supervised learning,
where we can train the video desmoking network D as,

Θ∗
D = argmin

ΘD
L
(
D({Si}Ni=1;ΘD),Sps

)
, (2)

where L denotes the learning objective.
It is worth noting that Îi is not spatially aligned with Sps. Taking Sps as

supervision directly may lead to blurry results [34, 67, 69]. Instead, we adopt a
deformation-based learning objective to tolerate the misalignment. In particular,
a pre-trained optical flow network O is first used to estimate the optical flow
Ψps→i from Sps to Îi, i.e.,

Ψps→i = O(Sps, Îi). (3)

Then Îi is back warped towards Sps with a warping operation W according to
the estimated optical flow Ψps→i, i.e.,

Îi→ps = W (̂Ii,Ψps→i). (4)

Finally, Îi→ps is spatially aligned with Sps. The reconstruction loss Lrec of the
desmoking model can be written as,

Lrec =

N∑
i=1

||Vi ⊙ (̂Ii→ps − Sps)||1. (5)

⊙ is a pixel-wise multiply operation. Vi is a mask that indicates the valid posi-
tions of optical flow. The j-th element of Vi can be calculated as,

Vj
i = sgn (max (0, [W(1,Ψps→i)]j − τ)) . (6)
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DCP Blur

𝐒𝑟𝑒𝑓→𝑖

Dark channel prior Gaussian blurDCP Blur

Fig. 4: The structure of masked-ref generator. The mask generator is used to generate
a mask Mi, which is employed to produce the masked reference features F̃ref→i.

W is warping operation. max and sgn are the maximum and sign function,
respectively. 1 is an all-1 matrix, [·]j denotes the j-th element. τ is set to 0.999.

3.2 Taking PS Frame as Reference Input

We note that PS frame is available during both training and testing. Thus,
beyond taking PS frame as supervision, we can further take the PS frame as
a reference (Ref) input to guide smoke removal. Denote by Sref the Ref (i.e.,
Sps), Eq. (2) can be modified as,

Θ∗
D = argmin

ΘD
L
(
D({Si}Ni=1,Sref ;ΘD),Sps

)
. (7)

Denote the features of Ref and the i-th smoky frame by Fref and Fi respectively
(see Sec. 3.4 for details). The spatial misalignment between them should be
addressed first. Thus, we estimate the optical flow Ψi→ref from the i-th smoky
frame Si to Sref . Then, we back warp Fref to Fi according to Ψi→ref , generating
the warped reference features Fref→i.

When Ψi→ref is perfectly estimated, Fref→i is naturally perfectly aligned
with Fi. In this case, the desmoking model can produce better results. However,
it is not realistic to achieve perfect optical flow estimation due to the interference
of surgical smoke and content occlusion. Some contents (e.g ., areas where high-
energy devices move significantly) in Fref may not be correctly mapped to the
corresponding positions in Fi, being kept in Fref→i. Moreover, the desmoking
model tends to utilize features from Fref→i rather than Fi, as the former contains
more clean information relevant to supervision. Thus, the model easily over-fits
the Ref, as shown in Fig. 3. To circumvent the issue, we introduce a hard masking
strategy and supplement a soft regularization term, as described below.
Masking Strategy. In regions with significantly inaccurate optical flow, we
prefer to forget the reference information to avoid output contents being incon-
sistent with smoky inputs. As shown in Fig. 4, we suggest generating a mask Mi

to indicate these regions in Fref→i, and exclude corresponding features, i.e.,

F̃ref→i = Mi ⊙ Fref→i. (8)
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Initialize

SelfSVD*

SelfSVD

𝐒𝑝𝑠 𝐒𝑝𝑠
∗
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Trainable

Frozen

Fig. 5: The illustration of enhancing PS frame (Sps) as supervision. We regard Sps as
a frame with less smoke and feed it into a pre-trained SelfSVD model, generating a
cleaner result S∗

ps. Then, S∗
ps is taken as improved supervision to fine-tune the SelfSVD

model by Lrec and LGAN (i.e., replacing Sps with S∗
ps in Eq. (5) and Eq. (11)), getting

an improved model named SelfSVD∗.

As shown in Fig. 4, to obtain Mi, we first align Sref to Si, obtaining the warped
reference image Sref→i. Then, we process Sref→i and Si with DCP [21] and
large-kernel Gaussian blur operations to alleviate the disturbance of surgery
smoke. Next, we divide Sref→i and Si into P non-overlapping patches respec-
tively, i.e., {Sp

ref→i}
P

p=1
and {Sp

i }
P
p=1. For each pair Sp

ref→i and Sp
i , their struc-

ture should be significantly distinct when optical flow is estimated inaccurately.
So we adopt structural similarity (SSIM) metric [61] to detect such patch, i.e.,

mp
i = sgn

(
max

(
0, SSIM(Sp

ref→i,S
p
i )− ϵ

))
. (9)

mp
i is the value of Mi in the p-th patch. ϵ is a threshold and is set to 0.92. The

patch size is set to 8. Please see more details about mask in the Suppl.
Regularization Strategy. The areas where optical flow is slightly wrong may
lead to potential trivial solutions, as they are not easily detected explicitly. We
use ℓ1 regularization [3, 12] to constraint Fref→i in these areas (indicated by
mask Mi) to be sparse. The regularization loss Lreg can be written as,

Lreg = ||Mi ⊙ Fref→i||1. (10)

3.3 Enhancing PS Frame as Supervision

For model training, there are two possible ways to introduce PS frame. One
is to always adopt the starting frame in surgery, and another one is to select
it dynamically as the surgery proceeds. We adopt the latter way, as the video
contents may change significantly, causing starting frames to provide insufficient
information for long-distance ones. However, in this manner, some smoke gen-
erated by previous activation of high-energy devices may remain in Sps. Thus,
naively taking Sps as supervision may not be the optimal solution.

Taking this into account, we improve the training of SelfSVD by enhancing
Sps as better supervision, dubbed SelfSVD∗, as shown in Fig. 5. In particular, a
SelfSVD model is first pre-trained under the supervision of Sps. Then, we regard
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Sps as a frame with less smoke and feed it into the pre-trained SelfSVD, getting
a cleaner result S∗

ps. Finally, a SelfSVD∗ model is obtained by fine-tuning the
pre-trained SelfSVD with S∗

ps as supervision, and the original SelfSVD model
can be detached during testing.

3.4 Network Architecture and Learning Objective

Network Architecture. Considering the practical application, the desmoking
model needs to process surgery videos online, rather than offline. Therefore, we
design a video desmoking network based on the unidirectional recurrent neural
network [62]. According to the function of each component, it can be divided
into five modules, i.e., feature encoder, masked-ref generator, alignment, fusion,
and reconstruction module. When processing the i-th smoky frame Si, we first
pass Si to the encoder to obtain its features Fi. Sref and Si are fed into the
masked-ref generator to get the masked reference features F̃ref→i, which has
been introduced in Sec. 3.2. Then, we deploy the alignment module based on the
optical flow to align previous temporal features Hi−1 to Fi, getting the warped
ones Hi−1→i. Finally, the fusion module takes Fi, F̃ref→i and Hi−1→i as inputs
to get the fused feature representations, which are passed to the reconstruction
module for generating the restored clean component Îi. Please see more details
about the network architecture in the Suppl.
Learning Objective. To further improve the visual quality, we adopt adver-
sarial loss [41] to train our desmoking networks, which can be written as,

LGAN =
1

2
ES∼PS

[DISC(D(S,Sref ))− 1]
2
, (11)

where S denotes the smoky video {Si}Ni=1, and DISC is the discriminator [74]
(see the Suppl. for detailed structure). The discriminator is trained by,

LDISC =
1

2
ESps∼PSps

[DISC(Sps)− 1]2

+
1

2
ES∼PS

[DISC(D(S,Sref ))]
2
. (12)

Overall, combined Eq. (5), Eq. (10) and Eq. (11), the loss terms of SelfSVD can
be written as,

L = Lrec + λregLreg + λGANLGAN , (13)

where λreg and λGAN are set to 0.05 and 1.0, respectively. When training
SelfSVD∗ model, Sps in Eq. (13) is replaced with S∗

ps, as stated in Sec. 3.3.

4 LSVD Dataset

Cyclic-DesmokeGAN [57] and Desmoke-LAP [43] collect 1,200 smoky images and
3,000 ones from cholecystectomy and hysterectomy surgery recordings, respec-
tively. However, they are only used for single-image desmoking, being unsuitable
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for our video desmoking. Sengar et al . [51] propose a video desmoking dataset
but the smoke is simulated by the 3D graphics rendering engine [23]. As far as
we know, real-world laparoscopic surgery video desmoking datasets are currently
scarce, which implies a high demand for this dataset.

In this work, we construct the LSVD dataset by collecting laparoscopic
surgery videos of 40 patients from professional hospitals. We first select the
frames manually where surgeons start activating the high-energy devices in each
video. Then, we take its preceding frame as PS frame and several subsequent
ones (until the one in which smoke is nearly dismissed) as smoky frames. Finally,
486 video clips are collected, where each clip contains 20∼50 frames with a res-
olution of 1080× 1920. 416 clips are used for the training set, and the remaining
70 ones are used for the testing set. The dataset covers diverse and complex
real-world surgical smoke. We provide some examples in the Suppl.

5 Experiments

5.1 Implementation Details

For optical flow estimation, we adopt a pre-trained PWC-Net [54]. During train-
ing, we randomly crop patches and augment them with random flips. The batch
size is set to 4 and the patch size is set to 256 × 256. SelfSVD is trained with
ADAM optimizer [28] with β1 = 0.9 and β2 = 0.99 for 100k iterations. Cosine
annealing strategy [38] is employed to decrease the learning rate from 1× 10−4

to 1× 10−7 steadily. For the training of SelfSVD∗, we fine-tune the pre-trained
SelfSVD model for additional 40k iterations and set the initial learning rate to
5 × 10−5. All experiments are conducted with PyTorch [44] on a single Nvidia
GeForce RTX A6000 GPU.

SelfSVD and SelfSVD∗ keep the same number of residual blocks [22] as Ba-
sicVSR++ [7], and the computation costs are generally similar to the video
processing methods. Moreover, to make the model inference cost consistent with
some single-image processing methods, we present the lightweight versions by
reducing the numbers and channels of residual blocks, dubbed SelfSVD-S and
SelfSVD∗-S respectively. Please see more details in the Suppl.

5.2 Evaluation Configurations

On the one hand, as smoky frames have no paired clean frames, we have to
utilize PS frame to evaluate desmoking methods. To remove the possible smoke
in PS frame, we first feed it into a pre-trained SelfSVD model and take the pre-
processed PS frame as the clean target. Then we adopt the aligned PSNR [26] and
SSIM [61] as the reference evaluation metrics, following similar works [2, 14, 62]
Specifically, we align desmoking results to the target by a pre-trained optical flow
network (i.e., PWC-Net [54]) and calculate PSNR and SSIM between aligned
results and the target. Simultaneously, we also report the metrics when taking the
original PS frame as the target in the Suppl. On the other hand, we employ no-
reference metrics (i.e., FADE [10], NIQE [42], and PI [4]) to assess the desmoking
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Table 1: Quantitative comparison on LSVD dataset. ↑ denotes the higher metric the
better, and ↓ denotes the lower one the better. The best results in each category are
marked in boldboldbold.

Methods PSNR↑ SSIM↑ FADE↓ NIQE↓ PI↓ #FLOPs
(G)

#Time
(s)

#Params
(M)

Unsupervised
Image Processing

PSD [9] 14.69 0.3722 0.17150.17150.1715 5.445.445.44 4.37 905 0.31 31.11
DCP [21] 17.7717.7717.77 0.55820.55820.5582 0.3217 5.53 4.254.254.25 - 0.080.080.08 -

Unpaired
Image Processing

DCP-Pixel2Pixel [50] 19.65 0.5079 0.5509 6.30 4.50 195195195 0.020.020.02 54.40
DistentGAN [52] 21.51 0.6037 0.6135 4.95 3.60 1572 0.22 11.38
Desmoke-LAP [43] 22.52 0.6170 0.53860.53860.5386 4.754.754.75 3.93 1571 0.15 11.38
RefineNet [70] 22.8722.8722.87 0.61770.61770.6177 0.5749 6.93 4.13 1780 0.34 0.85

Self-Supervised
Image Processing

UHD [63] 20.93 0.5792 1.3573 6.26 6.18 123 0.27 34.55
MSDesmoking [59] 21.53 0.5997 1.1290 5.205.205.20 5.19 605 0.04 8.80
Wang et al . [60] 22.65 0.6078 1.1202 7.63 7.11 6584 28.20 3.19
MSBDN [11] 22.69 0.6093 0.8995 6.07 5.40 779 0.29 31.35
AODNet [29] 23.03 0.6116 1.0417 5.96 4.79 444 0.08 0.0020.0020.002
DADFNet [20] 23.06 0.6143 0.49480.49480.4948 5.29 4.084.084.08 198 0.030.030.03 0.85
Dehamer [19] 23.1323.1323.13 0.61840.61840.6184 1.1508 6.93 6.36 1564 0.41 132.45

Self-Supervised
Video Processing

BasicVSR [6] 23.00 0.6168 0.5609 5.60 4.13 831 0.13 6.29
BasicVSR++ [7] 23.35 0.6196 0.5665 5.50 3.90 1197 0.19 9.76
MAPNet [64] 23.28 0.6152 0.9632 5.53 5.43 261 0.20 28.75
(Ours) SelfSVD-S 23.84 0.6183 0.4787 5.04 3.94 169169169 0.030.030.03 1.921.921.92
(Ours) SelfSVD∗-S 24.00 0.6209 0.4404 4.87 3.92 169169169 0.030.030.03 1.921.921.92
(Ours) SelfSVD 24.23 0.6216 0.4626 4.85 3.87 996 0.18 15.58
(Ours) SelfSVD∗ 24.5824.5824.58 0.62790.62790.6279 0.41930.41930.4193 4.724.724.72 3.863.863.86 996 0.18 15.58

results. In addition, the number of model parameters and FLOPs, as well as
inference time per frame when inputting 1080× 1920 videos are also reported.

5.3 Comparison with State-of-the-Art Methods

Related learning-based methods are either trained on synthetic data in a su-
pervised manner [6, 7, 11, 19, 20, 29, 59, 63, 64], or trained in a unpaired man-
ner [43, 50, 52, 70]. For fair comparisons, we retrain their models on our LSVD
dataset. For training supervised methods, there is no paired ground-truth. In-
stead, we take the aligned PS frame as the supervision, which is the same
as the setting of training our models as stated in Sec. 3.1. Thus, they be-
come self-supervised methods. For unpaired learning methods, we take the orig-
inal PS frame as their unpaired supervision. Overall, we compare our meth-
ods (i.e., SelfSVD-S and SelfSVD∗-S, SelfSVD, SelfSVD∗) against 16 related
state-of-the-art ones, including 2 unsupervised image processing methods (i.e.,
PSD [9], DCP [21]), 4 unpaired image ones (i.e., DCP-Pixel2Pixel [50], Dis-
tentGAN [52], and Desmoke-LAP [43], RefineNet [70]), 7 self-supervised image
ones (i.e., UHD [63], MSDesmoking [59], Wang et al . [60] MSBDN [11], AOD-
Net [29], DADFNet [20], Dehamer [19],) and 3 self-supervised video ones (i.e.,
BasicVSR [6], BasicVSR++ [7], and MAPNet [64]). We do not compare with un-
supervised and unpaired video ones, as few works explore that as far as we know.
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Smoky Frame AODNet [29] Dehamer [19] DADFNet [20] DCP [21] PSD [9]

RefineNet [70] BasicVSR++ [7] MAPNet [64] SelfSVD SelfSVD∗ PS Frame
Fig. 6: Qualitative comparison on LSVD dataset. Our methods generate results more
consistent with the PS frame.

Beyond conducting experiments on our dataset, we provide more comparisons
on a synthetic dataset in the Suppl.
Quantitative Comparison. Tab. 1 summarizes the quantitative results. First,
video processing methods generally perform better than single-image ones, which
demonstrates the benefits of utilizing temporal clues for surgical smoke removal.
Second, our methods outperform state-of-the-art ones by a large margin. Among
all competing methods, BasicVSR++ [7] has achieved the best PSNR score
of 23.35dB. Our SelfSVD and SelfSVD∗ achieve PSNR gains of 0.88dB and
1.23dB over BasicVSR++ [7], respectively. Although PSD [70] and DCP [21]
get better FADE scores, they generally over-process smoky videos and result in
over-saturated colors (as shown in Fig. 6), leading to poor NIQE and PI scores,
as well as unsatisfactory visual effects. Third, with lower computation cost and
fewer model parameters, the proposed SelfSVD-S and SelfSVD∗-S still perform
well, which further illustrates the effectiveness of our methods.
Qualitative Comparison. Due to space limitation, we only provide qualitative
results of some methods with better quantitative scores in Fig. 6. It can be seen
that the compared methods often introduce color distortion, over-smoothing, or
smoke preservation in their results. Instead, our methods remove more smoke
and restore more details that are consistent with PS frames. More qualitative
comparison results can be seen in the Suppl.

6 Ablation Study

6.1 Effect of Taking PS Frame as Supervision

PS frame (i.e., Sps) is regarded as unaligned supervision in our methods. To
mitigate the adverse effects of misalignment between output and target super-
vision, we deploy a pre-trained PWC-Net [54] to align the desmoking result Îi
with Sps, then calculate reconstruction loss Lrec, as shown in Eq. (5). Here we
conduct experiments with different loss variants to validate the effectiveness of
our method. The quantitative results are shown in Tab. 2. First, we can train
the desmoking network without Lrec, i.e., only with the adversarial loss. In this
case, the method degenerates to the unpaired learning manner, and it leads to
a significant performance drop. Second, when we do not consider the misalign-
ment issue and utilize the supervision with naive ℓ1 loss, it still results in a
severe performance drop. Third, we compare our deformation-based loss with



SelfSVD 13

(a) Somky Frame (b) w/o Ref (c) w/ Ref (d) PS Frame
Fig. 7: Qualitative results of taking PS frame as Ref input or not.

alternative misalignment-tolerated methods, including the contextual bilateral
(CoBi) loss [68] and reversed-order alignment (i.e., ‘align Sps with Îi’). Although
these two methods can also improve performance compared with naive ℓ1 loss,
our method achieves better results than theirs. Compared with the CoBi loss,
our method exploits the motion prior in the pre-trained optical flow estimation
network, achieving more accurate spatial matching. Compared with the reversed-
order alignment strategy that partially destroys the information of PS frame, our
method keeps PS frame unchanged, thus providing more accurate supervision.

6.2 Effect of Taking PS Frame as Reference Input

Note that PS frame is available during training and testing. We take it as an
additional reference (Ref) input. We perform experiments to evaluate its effec-
tiveness by removing the Ref. As shown in Tab. 3, the additional Ref enables
0.67dB PSNR improvements. Besides, Fig. 7 shows that it leads to cleaner smoke
removal and finer-scale detail recovery, especially in areas with dense smoke.

We also conduct experiments to validate whether PS frame is a suitable
choice to be used as Ref. For comparison, we replace Ref with the first smoky
frame, as it generally has less smoke than subsequent smoky ones. As shown in
Tab. 3, the replacement leads to 0.28dB PSNR drop, which illustrates the frames
before the activations of high-energy devices are preferable to be taken as Ref.

6.3 Effect of Strategies to Avoid Trivial Solutions

A masking strategy and a regularization term are introduced to prevent trivial
solutions. To validate the effectiveness, we conduct experiments with their differ-
ent combinations, i.e., ‘w/o Mask & w/o Reg’, ‘w/ Mask & w/o Reg’, ‘w/o Mask
& w/ Reg’ and ‘w/ Mask & w/ Reg’. ‘Mask’ and ‘Reg’ denote the masking strat-
egy and the regularization term respectively. Naively inputting PS frame as Ref
easily leads to trivial solutions, as marked with yellow boxes in Fig. 8 (b). Fig. 8
(c) and (d) show that both ‘Mask’ and ‘Reg’ inhibit the trivial solutions, but
using one of them alone does not achieve the best results. On the one hand, using
‘Mask’ alone can handle poorly aligned areas well, as they are relatively easy to
detect. Nevertheless, there still remain artifacts around high-energy devices, as
marked with yellow boxes in Fig. 8 (c). On the other hand, using ‘Reg’ alone
generally suppresses trivial solutions. As the areas with significantly imperfect
optical flow are not explicitly processed, it may leave some traces of high-energy
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(a) Smoky Frame (b) w/o ‘Mask’ & w/o ‘Reg’ (c) w/ ‘Mask’ & w/o ‘Reg’ (d) w/o ‘Mask’ & w/ ‘Reg’ (e) w/ ‘Mask’ & w/ ‘Reg’ (f) PS Frame

Fig. 8: Effect of strategies to avoid trivial solutions. ‘Mask’ and ‘Reg’ denote masking
strategy and regularization term, respectively. Naively inputting PS frame as Ref leads
to trivial solutions, as marked with yellow boxes in (b). Using ‘Mask’ alone may gen-
erate artifacts around high-energy devices, as marked with yellow boxes in (c). Using
‘Reg’ alone may leave trivial solution traces of high-energy devices from Ref, as marked
with yellow boxes in (d). Their combination produces better results in (e).

Table 2: Ablation studies on reconstruc-
tion loss Lrec.

Lrec PSNR↑/SSIM↑/FADE↓/NIQE↓/PI↓

None 22.40/0.6030/0.4219/5.37/4.04
Naive ℓ1 Loss 22.67/0.5880/0.4720/5.23/4.00
CoBi Loss [68] 22.82/0.6093/0.4721/4.86/3.86

Align Sps with Îi 24.12/0.6205/0.4663/5.05/3.94
Align Îi with Sps 24.23/0.6225/0.4626/4.85/3.87

Table 3: Quantitative results when in-
putting different Ref. ‘None’ denotes no
Ref being input.

Input Ref PSNR↑/SSIM↑/FADE↓/NIQE↓/PI↓

None 23.56/0.6183/0.4772/4.87/3.85
First Smoky Frame 23.95/0.6216/0.4701/4.88/3.85

PS Frame 24.23/0.6225/0.4626/4.85/3.87

devices from Ref, as marked with yellow boxes in Fig. 8 (d). Instead, their com-
bination generates improved results, as shown in Fig. 8 (e). Besides, we also
provide the effect of regularization loss weight λreg in the Suppl.

7 Conclusion

Existing laparoscopic surgery desmoking works struggle with processing real-
world smoke, especially dense smoke, due to the unavailable of real-world paired
data and the severely ill-posed nature of single-image methods. To address the
issue, we suggested leveraging the internal characteristics of real-surgery video
for effective self-supervised video desmoking and propose SelfSVD to achieve
this. Based on the observation that the pre-smoke (PS) frame has less smoke
and similar contents as subsequent smoky ones, SelfSVD utilizes it as an un-
aligned supervision. Moreover, SelfSVD takes PS frame as a reference input to
handle dense smoke better, and a masking strategy and a regularization term
are introduced to prevent trivial solutions. Besides, we collect a real-world la-
paroscopic surgery video desmoking (LSVD) dataset, which can potentially be
advantageous for future studies. Extensive experiments show that our SelfSVD
outperforms the state-of-the-art methods both quantitatively and qualitatively.
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– More result comparisons in Sec. F.

– Practical deployment in surgery in Sec. G.

– Limitation and social impact in Sec. H.

A Results on Synthetic Dataset

We also conduct experiments in a synthetic video dataset. We evaluate the com-
pared methods with paired clean videos that are spatially aligned with the smoky
videos. We collect 380 clean video clips from public Cholec80 dataset [56], where
280 clips are used for training and the remaining 100 ones are used for evaluation.
We follow the surgery smoke simulation manner [25] and add synthetic smoke in
the clean video clips, except the first frame (regarded as PS frame). The results
are shown in Tab. A. As the PS frame in the synthetic dataset is clean, we do not
perform experiments with SelfSVD∗ and SelfSVD∗-S. Our results get the best
PSNR scores, indicating the effectiveness of the proposed method. Moreover, the
visual comparisons in Figs. A and B show that our results produce few visual
artifacts, remove more clean smoke and are more consistent with the GT.
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Table A: Comparison results on the synthetic dataset. The best results in each cate-
gory are marked in boldboldbold.

Methods PSNR↑ SSIM↑

Unsupervised
Image Processing

PSD [9] 13.94 0.76830.76830.7683
DCP [21] 15.7115.7115.71 0.7413

Unpaired
Image Processing

DCP-Pixel2Pixel [50] 20.01 0.5226
DistentGAN [52] 20.88 0.8056
Desmoke-LAP [43] 24.82 0.8966
RefineNet [70] 26.9426.9426.94 0.93340.93340.9334

Self-Supervised
Image Processing

UHD [63] 25.50 0.9410
MSDesmoking [59] 26.77 0.9021
Wang et al . [60] 30.7630.7630.76 0.94700.94700.9470
MSBDN [11] 23.27 0.6251
AODNet [29] 22.69 0.9002
DADFNet [20] 23.32 0.8264
DeHamar [19] 29.06 0.9396

Self-Supervised
Video Processing

BasicVSR [6] 31.33 0.9503
BasicVSR++ [7] 31.84 0.9570
MAPNet [64] 31.29 0.9242
(Ours) SelfSVD-S 31.96 0.9520
(Ours) SelfSVD 32.3032.3032.30 0.96110.96110.9611

B Network Details

We design the video desmoking network based on the unidirectional recurrent
network [62]. It includes five modules, i.e., feature encoder, masked-ref gener-
ator, alignment, fusion, and reconstruction module. When processing the i-th
smoky frame Si, it is first fed into the encoder to obtain feature representations
Fi. Sref and Si are fed into the masked-ref generator to get the masked refer-
ence features F̃ref→i. Then, we deploy the alignment module to align previous
temporal features Hi−1 to Fi, getting the warped ones Hi−1→i. Next, the fusion
module concatenates Fi, F̃ref→i and Hi−1→i as inputs, producing the fused
features. Finally, the fused features are fed into the reconstruction module to
generate the restored clean component Îi.
Details of SelfSVD and SelfSVD∗. For SelfSVD and SelfSVD∗, the encoder
includes two 3×3 convolutional layers with a stride of 2 for scale down-sampling
and 5 residual blocks [22] for feature extraction. We deploy individual encoders
for the smoky frame and reference input respectively. The alignment module is
built upon a pre-trained optical flow network (e.g ., PWC-Net [54]). The fusion
module consists of a 3 × 3 convolutional layer for channel reduction and 60
residual blocks for feature enhancement. The reconstruction module includes 5
residual blocks, two pixel-shuffle operations, and a final 3×3 convolutional layer.
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Smoky Frame PSD DCP DCP-Pixel2Pixel DistentGAN

Desmoke-LAP RefineNet UHD MSDesmoking Wang et al.

MSBDN AODNet DADFNet DeHamar BasicVSR

BasicVSR++ MAPNet SelfSVD-S SelfSVD GT

Fig.A: Qualitative comparisons on the synthetic dataset. Our results produce few
visual artifacts and are more consistent with the GT.

Fig. B: Qualitative comparisons on the synthetic dataset. Our results remove more
clean smoke and are more consistent with the GT.

Details of SelfSVD-S and SelfSVD∗-S. The computation costs of SelfSVD
and SelfSVD∗ are generally similar to the video processing methods. To make the
computation cost consistent with single-image ones, we present the lightweight
models SelfSVD-S and SelfSVD∗-S. Specifically, we first replace PWC-Net [54]
in the alignment module to a more lightweight optical flow network SpyNet [46].
Second, we reduce the number of residual blocks in the feature encoder, masked-
ref generator, fusion, and reconstruction module from 5, 5, 60, 5 to 3, 3, 8,
3 respectively. Third, we reduce the channel numbers from 64 to 32. Benefiting
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Fig. C: Mask examples. A mask is generated to indicate areas with imperfect optical
flow to prevent trivial solutions. Masked regions are marked with black pixels in (d).

Table B: Structure configuration of the discriminator. The kernel size of all convolu-
tional layers is 4 × 4. ‘Stride’ denotes the stride of convolutional layer. ‘BN’ denotes
the BatchNorm [27] operation.

Layer Filter Stride Output size

Conv, LeakyReLU 3 → 64 2 128× 128
Conv, BN, LeakyReLU 64 → 128 2 64× 64
Conv, BN, LeakyReLU 128 → 256 2 32× 32
Conv, BN, LeakyReLU 256 → 512 2 31× 31
Conv, BN, LeakyReLU 512 → 1 1 30× 30

from the above simplification, SelfSVD-S and SelfSVD∗-S significantly reduce the
number of model parameters and computation costs, while keeping performance.
Details of Discriminator. PatchGAN [74] is employed as the discriminator to
distinguish whether a patch is real or fake. Its structure is shown in Tab. B.

C Visualization of Mask

To prevent trivial solutions, we generate a mask to indicate areas with imperfect
optical flow. Moreover, we process the smoky frame and warped reference (Ref)
input with dark channel prior [21] (DCP) and large-kernel Gaussian blur (Blur)
to mitigate smoke interference. Mask examples are provided in Figs. C and D.
On the one hand„ it successfully detects the areas with imperfect optical flow,
as shown in Fig. C. On the other hand, DCP and Blur help to avoid detecting
incorrect masked areas, as shown in Fig. D.

D Effect of Regularization Term

Here we conduct experiments to validate the effect of regularization term weight
λreg. The results are shown in Fig. E and Tab. C. In general, a smaller λreg leads
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Fig.D: Effect of dark channel prior (DCP) and Gaussian blur (Blur) operations. DCP
and Blur help to avoid detecting incorrect masked areas. The masked areas are marked
with black pixels in (d), (e), and (f).

Somky Frame λreg = 0.01 λreg = 0.05 λreg = 0.1 PS Frame
Fig. E: Effect of regularization term weight λreg. Please zoom in for better observation.

Table C: Effect of regularization term weight λreg.

λreg PSNR↑ / SSIM↑ / FADE↓ / NIQE↓ / PI↓

0.01 24.46 / 0.6254 / 0.4650 / 4.91 / 3.88
0.05 24.23 / 0.6225 / 0.4626 / 4.85 / 3.87
0.1 24.03 / 0.6200 / 0.4658 / 4.87 / 3.82

to a weaker suppression of trivial solutions, while a larger one leads to a weaker
utilization of Ref. We set λreg to 0.05 for the trade-off.

E Examples from LSVD Dataset

We construct the laparoscopic surgery video desmoking (LSVD) dataset from
professional hospitals. Some examples from the dataset are provided in Fig. F.
It can be seen that the dataset contains diverse and complex surgery smoke,
such as mist, droplets, and streaks.

F More Result Comparisons

In the main text, we utilize the processed PS frame as the target to evaluate
desmoking methods, as smoke may remain in it. Here, we provide the comparison
results when taking the original PS frame as the target, as shown in Tab. D. Due
to interference from smoke in the PS frame, SelfSVD∗ and SelfSVD∗-S get lower
PSNR and SSIM values than SelfSVD and SelfSVD-S, respectively. Moreover, it
shows that the proposed methods still outperform state-of-the-art ones.
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Table D: Comparisons on LSVD dataset. The original PS frame is taken as the clean
target for calculating metrics. The best results in each category are marked in boldboldbold.

Methods PSNR↑ SSIM↑

Unsupervised
Image Processing

PSD [9] 14.49 0.3811
DCP [21] 17.5417.5417.54 0.58190.58190.5819

Unpaired
Image Processing

DCP-Pixel2Pixel [50] 20.31 0.5409
DistentGAN [52] 22.58 0.6429
Desmoke-LAP [43] 23.70 0.6548
RefineNet [70] 24.0624.0624.06 0.65590.65590.6559

Self-Supervised
Image Processing

UHD [63] 21.78 0.6198
MSDesmoking [59] 22.42 0.6415
Wang et al . [60] 23.63 0.6496
MSBDN [11] 23.69 0.6515
AODNet [29] 23.45 0.6555
DADFNet [20] 23.73 0.6516
DeHamar [19] 24.1224.1224.12 0.65950.65950.6595

Self-Supervised
Video Processing

BasicVSR [6] 24.06 0.6560
BasicVSR++ [7] 24.38 0.65920.65920.6592
MAPNet [64] 24.25 0.6567
(Ours) SelfSVD-S 24.84 0.6551
(Ours) SelfSVD∗-S 24.25 0.6556
(Ours) SelfSVD 25.0825.0825.08 0.6564
(Ours) SelfSVD∗ 24.62 0.6548

More qualitative comparison results are provided in Figs. G to J. Our meth-
ods can remove more smoke, recover more photo-realistic details, and produce
results more consistent with PS frames than state-of-the-art ones.

G Practical Deployment in Surgery

In the main text, we have introduced how SelfSVD processes a single smoky
video clip. As a practical surgery video contains multiple smoky clips, here we
illustrate how to handle it. When processing the i-th smoky frame Si, an addi-
tional reference (Ref, Sref ) should be fed into the model to help smoke removal.
There are two possible ways to select it. One is to always adopt the starting
frame, and another one is to select it dynamically as the surgery proceeds. The
latter is more reasonable in surgical scenarios, as the changing video contents
lead to starting frames providing insufficient information for long-distance ones.

Specifically, we prefer to select Sref from previous neighboring frames that
are clearer than Si. As shown in Algorithm A, we first deploy a Ref detector
according to the residual between the current smoky input and the desmoking
output. Sref is updated when next clearer frame occurs. Then we feed Sref and
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Fig. F: Examples from LSVD dataset. Each row shows several frames from a video
clip. It can be seen that the dataset contains diverse and complex surgery smoke, such
as mist, droplets, and streaks. Please zoom in for better observation.

Algorithm A Pseudo code about the practical deployment of SelfSVD in
surgery

Require: {Si}Ni=1: N surgery video frames,
1: for i from 1 to N with stride L do
2: if ||Si − SelfSV D(Si,Si)||1 < ϵ then ▷ utilize Si as Ref for itself
3: Sref = Si ▷ detect the additional reference input Sref

4: end if
5: {Îk}i+L

k=i = SelfSV D({Sk}i+L
k=i ,Sref ) ▷ remove smoke for {Sk}i+L

k=i

6: return {Îk}i+L
k=i .

7: end for

the smoky video clip {Sk}i+L
k=i into a SelfSVD model, generating the clean results

{Îk}i+L
k=i . L is the frame number of the current video clip and we set it to 5. Please

see some visualization examples at the https://github.com/ZcsrenlongZ/SelfSVD.

H Limitation and Social Impact

This work is still limited in processing complex surgery smoke droplets. The
droplets influence the accuracy of the alignment module, making it hard to
effectively utilize the complementary information from input frames. It leads to
some droplet traces in the desmoking results.

As for the social impact, this work is promising to be applied to laparoscopic
surgery for observing the surgical sites more clearly. It has no foreseeable neg-
ative influence. Besides, the images utilized in this work are from professional
hospitals and have been authorized to be public. There is no personally identi-
fiable information about patients or offensive content in the experimental data.

https://github.com/ZcsrenlongZ/SelfSVD
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Fig.G: Qualitative comparisons on LSVD dataset. Our methods generate results more
consistent with the PS frame. Please zoom in for better observation.

Fig.H: Qualitative comparisons on LSVD dataset. Our methods remove more clean
smoke and recover more realistic details. Please zoom in for better observation.
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Fig. I: Qualitative comparisons on LSVD dataset. Our methods generate results with
fewer artifacts and are more consistent with the PS frame. Please zoom in for better
observation.

Fig. J: Qualitative comparisons on LSVD dataset. Our methods remove more clean
smoke and recover more fine-scale details. Please zoom in for better observation.
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