Skip to yearly menu bar Skip to main content


Poster

Source-Free Domain-Invariant Performance Prediction

Ekaterina Khramtsova · Mahsa Baktashmotlagh · Guido Zuccon · Xi Wang · Mathieu Salzmann

# 14
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Project Page ] [ Paper PDF ]
Wed 2 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Accurately estimating model performance poses a significant challenge, particularly in scenarios where the source and target domains follow different data distributions. Most existing performance prediction methods heavily rely on the source data in their estimation process, limiting their applicability in a more realistic setting where only the trained model is accessible. The few methods that do not require source data exhibit considerably inferior performance. In this work, we propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data. We establish connections between our approach for unsupervised calibration and temperature scaling. We then employ a gradient-based strategy to evaluate the correctness of the calibrated predictions. Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability. Furthermore, our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.

Chat is not available.