Skip to yearly menu bar Skip to main content


Poster

WorldPose: A World Cup Dataset for Global 3D Human Pose Estimation

Tianjian Jiang · Johsan Billingham · Sebastian Müksch · Juan J Zarate · Nicolas Evans · Martin R. Oswald · Marc Pollefeys · Otmar Hilliges · Manuel Kaufmann · Jie Song

# 118
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Wed 2 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

We present WorldPose, a novel dataset for advancing research in multi-person, global pose estimation in the wild, featuring footage from the 2022 FIFA World Cup. While previous datasets have primarily focused on local poses, often limited to a single person or in constrained, indoor settings, the infrastructure deployed for this sporting event allows access to multiple fixed and mobile cameras in different stadiums. We exploit the static multi-view setup of HD cameras to recover the 3D player poses and motions with unprecedented accuracy given capture areas of more than 1.75 acres (7k sqm). We then leverage the captured players' motions and field markings to calibrate a moving broadcasting camera. The resulting dataset comprises 88 sequences with more than 2.5 million 3D poses and a total traveling distance of over 120 km. Subsequently, we conduct an in-depth analysis of the SOTA methods for global pose estimation. Our experiments demonstrate that WorldPose challenges existing multi-person techniques, supporting the potential for new research in this area and others, such as sports analysis. All pose annotations (in SMPL format), broadcasting camera parameters and footage will be released for academic research purposes.

Live content is unavailable. Log in and register to view live content