Skip to yearly menu bar Skip to main content


Poster

Event-Aided Time-To-Collision Estimation for Autonomous Driving

Jinghang Li · Bangyan Liao · Xiuyuan LU · Peidong Liu · Shaojie Shen · Yi Zhou

# 172
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Wed 2 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Predicting a potential collision with leading vehicles is a fundamentally essential functionality of any autonomous/assisted driving system. One bottleneck of existing vision-based solutions is that their updating rate is limited to the frame rate of standard cameras used. In this paper, we present a novel method that estimates the time to collision using a neuromorphic event-based camera, a biologically inspired visual sensor that can sense at exactly the same rate as scene dynamics. The core of the proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data in a coarse-to-fine manner. The first step is a robust linear solver based on a novel geometric measurement that overcomes the partial observability of event-based normal flow. The second step further refines the resulting model via a spatio-temporal registration process which is formulated as a nonlinear optimization problem. Experiments demonstrate the effectiveness of the proposed method, outperforming other counterparts in terms of efficiency and accuracy.

Chat is not available.