Poster
HyTAS: A Hyperspectral Image Transformer Architecture Search Benchmark and Analysis
Fangqin Zhou · Mert Kilickaya · Joaquin Vanschoren · Ran Piao
# 47
Strong Double Blind |
Hyperspectral Imaging (HSI) plays an increasingly critical role in precise vision tasks within remote sensing, capturing a wide spectrum of visual data. Transformer architectures have significantly enhanced HSI task performance, while advancements in Transformer Architecture Search (TAS) have improved model discovery. To harness these advancements for HSI classification, we make the following contributions: i) We propose HyTAS, the first benchmark on transformer architecture search for Hyperspectral imaging, ii) We comprehensively evaluate 12 different methods to identify the optimal transformer over 5 different datasets, iii) We perform an extensive factor analysis on the Hyperspectral transformer search performance, greatly motivating future research in this direction. All benchmark materials included in our supplementary will be publicly available upon publication.