Skip to yearly menu bar Skip to main content


Poster

SAFT: Towards Out-of-Distribution Generalization in Fine-Tuning

Bac Nguyen · Stefan Uhlich · Fabien Cardinaux · Lukas Mauch · Marzieh Edraki · Aaron Courville

Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ]
Wed 2 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Handling distribution shifts from training data, known as out-of-distribution (OOD) generalization, poses a significant challenge in the field of machine learning. While a pre-trained vision-language model like CLIP has demonstrated remarkable zero-shot performance, further adaptation of the model to downstream tasks leads to undesirable degradation for OOD data. In this work, we introduce Sparse Adaptation for Fine-Tuning (SAFT), a method that prevents fine-tuning from forgetting the general knowledge in the pre-trained model. SAFT only updates a small subset of important parameters whose gradient magnitude is large, while keeping the other parameters frozen. SAFT is straightforward to implement and conceptually simple. Extensive experiments show that with only 0.1% of the model parameters, SAFT can significantly improve the performance of CLIP. It consistently outperforms baseline methods across several benchmarks. On the few-shot learning benchmark of ImageNet and its variants, SAFT gives a gain of 5.15% on average over the conventional fine-tuning method in OOD settings.

Live content is unavailable. Log in and register to view live content