Skip to yearly menu bar Skip to main content


Poster

HPE-Li: WiFi-enabled Lightweight Dual Selective Kernel Convolution for Human Pose Estimation

Gian Toan D. · Tien Dac Lai · Thien Van Luong · Kok-Seng Wong · Van-Dinh Nguyen

# 257
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Thu 3 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

WiFi-based human pose estimation (HPE) has emerged as a promising alternative to conventional vision-based techniques, yet faces the high computational cost hindering its widespread adoption. This paper introduces a novel HPE-Li approach that harnesses multi-modal sensors (e.g. camera and WiFi) to generate accurate 3D skeletal in HPE. We then develop an efficient deep neural network to process raw WiFi signals. Our model incorporates a distinctive multi-branch convolutional neural network (CNN) empowered by a selective kernel attention (SKA) mechanism. Unlike standard CNNs with fixed receptive fields, the SKA mechanism is capable of dynamically adjusting kernel sizes according to input data characteristics, enhancing adaptability without increasing complexity. Extensive experiments conducted on two MM-Fi and WiPose datasets underscore the superiority of our method over state-of-the-art approaches, while ensuring minimal computational overhead, rendering it highly suitable for large-scale scenarios.

Chat is not available.