The employment of the event-based synthetic aperture imaging (E-SAI) technique, which has the capability to capture high-frequency light intensity variations, has facilitated its extensive application on scene de-occlusion reconstruction tasks. However, existing methods usually require prior information and have strict restriction of camera motion on SAI acquisition methods. This paper proposes a novel end-to-end refocus-free variable E-SAI de-occlusion image reconstruction approach REDIR, which can align the global and local features of the variable event data and effectively achieve high-resolution imaging of pure event streams. To further improve the reconstruction of the occluded target, we propose a perceptual mask-gated connection module to interlink information between modules, and incorporate a spatial-temporal attention mechanism into the SNN block to enhance target extraction ability of the model. Through extensive experiments, our model achieves state-of-the-art reconstruction quality on the traditional E-SAI dataset without prior information, while verifying the effectiveness of the variable event data feature registration method on our newly introduced V-ESAI dataset, which obviates the reliance on prior knowledge and extends the applicability of SAI acquisition methods by incorporating focus changes, lens rotations, and non-uniform motion.