Skip to yearly menu bar Skip to main content


Poster

Fine-grained Dynamic Network for Generic Event Boundary Detection

Ziwei Zheng · Lijun He · Le Yang · Fan Li

# 116
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
[ Poster
Thu 3 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Generic event boundary detection (GEBD) aims at pinpointing event boundaries naturally perceived by humans, playing a crucial role in understanding long-form videos. Given the diverse nature of generic boundaries, spanning different video appearances, objects, and actions, this task remains challenging. Existing methods usually detect various boundaries by the same protocol, regardless of their distinctive characteristics and detection difficulties, resulting in suboptimal performance. Intuitively, a more intelligent and reasonable way is to adaptively detect boundaries by considering their special properties. In light of this, we propose a novel dynamic pipeline for generic event boundaries named DyBDet. By introducing a multi-exit network architecture, DyBDet automatically learns the subnet allocation to different video snippets, enabling fine-grained detection for various boundaries. Besides, a multi-order difference detector is also proposed to ensure generic boundaries can be effectively identified and adaptively processed. Extensive experiments on the challenging Kinetics-GEBD and TAPOS datasets demonstrate that adopting the dynamic strategy significantly benefits GEBD tasks, leading to obvious improvements in both performance and efficiency compared to the current state-of-the-art. The code is available at \url{https://github.com/anonymous}.

Chat is not available.