Skip to yearly menu bar Skip to main content


Poster

Learning to Obstruct Few-Shot Image Classification over Restricted Classes

Amber Yijia Zheng · Chiao-An Yang · Raymond Yeh

# 21
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Project Page ] [ Paper PDF ]
[ Poster
Thu 3 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Advancements in open-source pre-trained backbones make it relatively easy to fine-tune a model for new tasks. However, this lowered entry barrier poses potential risks, e.g., bad actors developing models for harmful applications. A question arises: "Is possible to develop a pre-trained model that is difficult to fine-tune for certain downstream tasks?" To begin studying this, we focus on few-shot classification (FSC). Specifically, we investigate methods to make FSC more challenging for a set of restricted classes while maintaining the performance of other classes. We propose to meta-learn over the pre-trained backbone in a manner that renders it a ``poor initialization''. Our proposed Learning to Obstruct (LTO) algorithm successfully obstructs four FSC methods across three datasets, including ImageNet and CIFAR100 for image classification, as well as CelebA for attribute classification.

Chat is not available.