Skip to yearly menu bar Skip to main content


Poster

Adaptive High-Frequency Transformer for Diverse Wildlife Re-Identification

Chenyue Li · Shuoyi Chen · Mang Ye

# 125
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Fri 4 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Wildlife ReID involves utilizing visual technology to identify specific individuals of wild animals in different scenarios, holding significant importance for wildlife conservation, ecological research, and environmental monitoring. Existing wildlife ReID methods are predominantly tailored to specific species, exhibiting limited applicability. Although some approaches leverage extensively studied person ReID techniques, they struggle to address the unique challenges posed by wildlife. Therefore, in this paper, we present a unified, multi-species general framework for wildlife ReID. Given that high-frequency information is a consistent representation of unique features in various species, significantly aiding in identifying contours and details such as fur textures, we propose the Adaptive High-Frequency Transformer model with the goal of enhancing high-frequency information learning. To mitigate the inevitable high-frequency interference in the wilderness environment, we introduce an object-aware high-frequency selection strategy to adaptively capture more valuable high-frequency components. Notably, we unify the experimental settings of multiple wildlife datasets for ReID and evaluate our model on diverse wildlife datasets, achieving performance superiority over state-of-the-art ReID methods. In domain generalization scenarios, our approach demonstrates robust generalization to unknown species.

Chat is not available.