Poster
CTRLorALTer: Conditional LoRAdapter for Efficient 0-Shot Control & Altering of T2I Models
Nick Stracke · Stefan Andreas Baumann · Joshua Susskind · Miguel Angel Bautista · Bjorn Ommer
# 319
[
Abstract
]
[ Project Page ]
[ Paper PDF ]
[
Poster]
[
Supplemental]
Tue 1 Oct 7:30 a.m. PDT
— 9:30 a.m. PDT
Abstract:
Text-to-image generative models have become a prominent and powerful tool that excels at generating high-resolution realistic images. However, guiding the generative process of these models to take into account detailed forms of conditioning reflecting style and/or structure information remains an open problem. In this paper, we present LoRAdapter, an approach that unifies both style and structure conditioning under the same formulation using a novel conditional LoRA block that enables zero-shot control. LoRAdapter is an efficient and powerful approach to condition text-to-image diffusion models, which enables fine-grained control conditioning during generation and outperforms recent state-of-the-art approaches.
Chat is not available.