Skip to yearly menu bar Skip to main content


Poster

Generalizable Facial Expression Recognition

Yuhang Zhang · Xiuqi Zheng · Chenyi Liang · Jiani Hu · Weihong Deng

Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ]
Tue 1 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

SOTA facial expression recognition (FER) methods fail on test sets that have domain gaps with the train set. Recent domain adaptation FER methods need to acquire labeled or unlabeled samples of target domains to fine-tune the FER model, which might be infeasible in real-world deployment. In this paper, we aim to improve the zero-shot generalization ability of FER methods on different unseen test sets using only one train set. Inspired by how humans first detect faces and then select expression features, we propose a novel FER pipeline to extract expression-related features from any given face images. Our method is based on the generalizable face features extracted by large models like CLIP. However, it is non-trivial to adapt the general features of CLIP for specific tasks like FER. To preserve the generalization ability of CLIP and the high precision of the FER model, we design a novel approach that learns sigmoid masks based on the fixed CLIP face features to extract expression features. To further improve the generalization ability on unseen test sets, we separate the channels of the learned masked features according to the expression classes to directly generate logits and avoid using the FC layer to reduce overfitting. We also introduce a channel-diverse loss to make the learned masks separated. Extensive experiments on five different FER datasets verify that our method outperforms SOTA FER methods by large margins. Code is available in the Supp. material.

Live content is unavailable. Log in and register to view live content