Skip to yearly menu bar Skip to main content


Poster

Preventing Catastrophic Overfitting in Fast Adversarial Training: A Bi-level Optimization Perspective

Zhaoxin Wang · Handing Wang · Cong Tian · Yaochu Jin

Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ]
Tue 1 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Adversarial training (AT) has become an effective defense method against adversarial examples (AEs) and it is typically framed as a bi-level optimization problem. Among various AT methods, fast AT (FAT), which employs a single-step attack strategy to guide the training process, can achieve good robustness against adversarial attacks at a low cost. However, FAT methods suffer from the catastrophic overfitting problem, especially on complex tasks or with large-parameter models. In this work, we propose a FAT method termed FGSM-PCO, which mitigates catastrophic overfitting by averting the collapse of the inner optimization problem in the bi-level optimization process. FGSM-PCO generates current-stage AEs from the historical AEs and incorporates them into the training process using an adaptive mechanism. This mechanism determines an appropriate fusion ratio according to the performance of the AEs on the training model. Coupled with a loss function tailored to the training framework, FGSM-PCO can alleviate catastrophic overfitting and help the recovery of an overfitted model to effective training. We evaluate our algorithm across three models and three datasets to validate its effectiveness. Comparative empirical studies against other FAT algorithms demonstrate that our proposed method effectively addresses unresolved overfitting issues in existing algorithms.

Live content is unavailable. Log in and register to view live content