Skip to yearly menu bar Skip to main content


Poster

Towards High-Quality 3D Motion Transfer with Realistic Apparel Animation

Rong Wang · Wei Mao · Changsheng Lu · HONGDONG LI

# 235
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Paper PDF ]
Wed 2 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

Animating stylized characters to match a reference motion sequence is a highly demanded task in film and gaming industries. Existing methods mostly focus on rigid deformations of characters' body, neglecting local deformations on the apparel driven by physical dynamics. They deform apparel the same way as the body, leading to results with limited details and unrealistic artifacts, e.g. body-apparel penetration. In contrast, we present a novel method aiming for high-quality motion transfer with realistic apparel animation. As existing datasets lack annotations necessary for generating realistic apparel animations, we build a new dataset named MMDMC, which combines stylized characters from the MikuMikuDance community with real-world Motion Capture data. We then propose a data-driven pipeline that learns to disentangle body and apparel deformations via two neural deformation modules. For body parts, we propose a geodesic attention block to effectively incorporate semantic priors into skeletal body deformation to tackle complex body shapes for stylized characters. Since apparel motion can significantly deviate from respective body joints, we propose to model apparel deformation in a non-linear vertex displacement field conditioned on its historic states. Extensive experiments show that our method not only produces superior results but also generalizes to various types of apparel.

Chat is not available.