Skip to yearly menu bar Skip to main content


Oral Session

Oral 6C: Vision And Other Modalities

Silver Room

Moderators: Shizhe Chen · Vicente Ordonez

Thu 3 Oct 4:30 a.m. PDT — 6:30 a.m. PDT
Abstract:
Chat is not available.

Thu 3 Oct. 4:30 - 4:40 PDT

GiT: Towards Generalist Vision Transformer through Universal Language Interface

Haiyang Wang · Hao Tang · Li Jiang · Shaoshuai Shi · Muhammad Ferjad Naeem · Hongsheng LI · Bernt Schiele · Liwei Wang

This paper proposes a simple, yet effective framework, called GiT, simultaneously applicable for various vision tasks only with a vanilla ViT. Motivated by the universality of the Multi-layer Transformer architecture (e.g., GPT) widely used in large language models (LLMs), we seek to broaden its scope to serve as a powerful vision foundation model (VFM). However, unlike language modeling, visual tasks typically require specific modules, such as bounding box heads for detection and pixel decoders for segmentation, greatly hindering the application of powerful multi-layer transformers in the vision domain. To solve this, we design a universal language interface that empowers the successful auto-regressive decoding to adeptly unify various visual tasks, from image-level understanding (e.g., captioning), over sparse perception (e.g., detection), to dense prediction (e.g., segmentation). Based on the above designs, the entire model is composed solely of a ViT, without any specific additions, offering a remarkable architectural simplification. GiT is a multi-task visual model, jointly trained across five representative benchmarks without task-specific fine-tuning. Interestingly, our GiT builds a new benchmark in generalist performance, and fosters mutual enhancement across tasks, leading to significant improvements compared to isolated training. This reflects a similar impact observed in LLMs. Further enriching training with 27 datasets, GiT achieves strong zero-shot results over various tasks. Due to its simple design, this paradigm holds promise for narrowing the architectural gap between vision and language. Code will be available.

Thu 3 Oct. 4:40 - 4:50 PDT

Omniview-Tuning: Boosting Viewpoint Invariance of Vision-Language Pre-training Models

Shouwei Ruan · Yinpeng Dong · Liu Hanqing · Yao Huang · Hang Su · Xingxing Wei

Vision-Language Pre-training (VLP) models like CLIP have achieved remarkable success in computer vision and particularly demonstrated superior robustness to distribution shifts of 2D images. However, their robustness under 3D viewpoint variations is still limited, which can hinder the development for real-world applications. This paper successfully addresses this concern while keeping VLPs' original performance by breaking through two primary obstacles: 1) the scarcity of training data and 2) the suboptimal fine-tuning paradigms. To combat data scarcity, we build the Multi-View Caption (MVCap) dataset --- a comprehensive collection of over four million multi-view image-text pairs across more than 100K objects, providing more potential for VLP models to develop generalizable viewpoint-invariant representations. To address the limitations of existing paradigms in performance trade-offs and training efficiency, we design a novel fine-tuning framework named Omniview-Tuning (OVT). Specifically, OVT introduces a Cross-Viewpoint Alignment objective through a minimax-like optimization strategy, which effectively aligns representations of identical objects from diverse viewpoints without causing overfitting. Additionally, OVT fine-tunes VLP models in a parameter-efficient manner, leading to minimal computational cost. Extensive experiments on various VLP models with different architectures validate that OVT significantly improves the models' resilience to viewpoint shifts and keeps the original performance, establishing a pioneering standard for boosting viewpoint invariance of VLP models.

Thu 3 Oct. 4:50 - 5:00 PDT

Turbo: Informativity-Driven Acceleration Plug-In for Vision-Language Large Models

Chen Ju · Haicheng Wang · Haozhe Cheng · Xu Chen · Zhonghua Zhai · Weilin Huang · Jinsong Lan · Shuai Xiao · Bo Zheng

Vision-Language Large Models (VLMs) recently become primary backbone of AI, due to the impressive performance. However, their expensive computation costs, i.e., throughput and delay, impede potentials in the real-world scenarios. To achieve acceleration for VLMs, most existing methods focus on the model perspective: pruning, distillation, quantization, but completely overlook the data-perspective redundancy. To fill the overlook, this paper pioneers the severity of data redundancy, and designs one plug-and-play Turbo module guided by information degree to prune inefficient tokens from visual or textual data. In pursuit of efficiency-performance trade-offs, information degree takes two crucial factors into consideration: mutual redundancy and semantic value. Concretely, the former evaluates data duplication between sequential tokens; while the latter evaluates each token by its contribution to the overall semantics. As a result, tokens with high information degree carry less redundancy and stronger semantics. For VLMs' calculation, Turbo works as a user-friendly plug-in that sorts data referring to information degree, utilizing only top-level ones to save costs. Its advantages are multifaceted, e.g., being generally compatible to various VLMs across understanding and generation, simple use without retraining and trivial engineering efforts. On multiple VLMs benchmarks, we fully experiment to reveal good acceleration of Turbo, under negligible performance drop.

Thu 3 Oct. 5:00 - 5:10 PDT

MMBENCH: Is Your Multi-Modal Model an All-around Player?

Yuan Liu · Haodong Duan · Yuanhan Zhang · Bo Li · Songyang Zhang · Wangbo Zhao · Yike Yuan · Jiaqi Wang · Conghui He · Ziwei Liu · Kai Chen · Dahua Lin

Large vision-language models (VLMs) have recently achieved remarkable progress, exhibiting impressive multimodal perception and reasoning abilities. However, effectively evaluating these large VLMs remains a major challenge, hindering future development in this domain. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but lack fine-grained ability assessment and robust evaluation metrics. Meanwhile, subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, which is not scalable and may display significant bias. In response to these challenges, we propose MMBench, a bilingual benchmark for assessing the multi-modal capabilities of VLMs. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of the following key features: 1. MMBench is meticulously curated with well-designed quality control schemes, surpassing existing similar benchmarks in terms of the number and variety of evaluation questions and abilities; 2. MMBench introduces a rigorous CircularEval strategy and incorporates large language models to convert free-form predictions into pre-defined choices, which helps to yield accurate evaluation results for models with limited instruction-following capabilities. 3. MMBench incorporates multiple-choice questions in both English and Chinese versions, enabling an apples-to-apples comparison of VLMs' performance under a bilingual context. To summarize, MMBench is a systematically designed objective benchmark for a robust and holistic evaluation of vision-language models. We hope MMBench will assist the research community in better evaluating their models and facilitate future progress in this area.

Thu 3 Oct. 5:10 - 5:20 PDT

Strengthening Multimodal Large Language Model with Bootstrapped Preference Optimization

Renjie Pi · Tianyang Han · Wei Xiong · Jipeng ZHANG · Runtao Liu · Rui Pan · Tong Zhang

Multimodal Large Language Models (MLLMs) excel in generating responses based on visual inputs. However, they often suffer from a bias towards generating responses similar to their pretraining corpus, overshadowing the importance of visual information. We treat this bias as a "preference" for pretraining statistics, which hinders the model's grounding in visual input. To mitigate this issue, we propose Bootstrapped Preference Optimization (BPO), which conducts preference learning with datasets containing negative responses bootstrapped from the model itself. Specifically, we propose the following two strategies: 1) using distorted image inputs to the MLLM for eliciting responses that contain signified pretraining bias; 2) leveraging text-based LLM to explicitly inject erroneous but common elements into the original response. Those undesirable responses are paired with original annotated responses from the datasets to construct the preference dataset, which is subsequently utilized to perform preference learning. Our approach effectively suppresses pretrained LLM bias, enabling enhanced grounding in visual inputs. Extensive experimentation demonstrates significant performance improvements across multiple benchmarks, advancing the state-of-the-art in multimodal conversational systems.

Thu 3 Oct. 5:20 - 5:30 PDT

Beat-It: Beat-Synchronized Multi-Condition 3D Dance Generation

Zikai Huang · Xuemiao Xu · Cheng Xu · Huaidong Zhang · Chenxi Zheng · Jing Qin · Shengfeng He

Dance, as an art form, fundamentally hinges on the precise synchronization with musical beats. However, achieving aesthetically pleasing dance sequences from music is challenging, with existing methods often falling short in controllability and beat alignment. To address these shortcomings, this paper introduces Beat-It, a novel framework for beat-specific, key pose-guided dance generation. Unlike prior approaches, Beat-It uniquely integrates explicit beat awareness and key pose guidance, effectively resolving two main issues: the misalignment of generated dance motions with musical beats, and the inability to map key poses to specific beats, critical for practical choreography. Our approach disentangles beat conditions from music using a nearest beat distance representation and employs a hierarchical multi-condition fusion mechanism. This mechanism seamlessly integrates key poses, beats, and music features, mitigating condition conflicts and offering rich, multi-conditioned guidance for dance generation. Additionally, a specially designed beat alignment loss ensures the generated dance movements remain in sync with the designated beats. Extensive experiments confirm Beat-It's superiority over existing state-of-the-art methods in terms of beat alignment and motion controllability. Qualitative results of our method can be found on our anonymous website.

Thu 3 Oct. 5:30 - 5:40 PDT

A Simple Baseline for Spoken Language to Sign Language Translation with 3D Avatars

Ronglai Zuo · Fangyun Wei · Zenggui Chen · Brian Mak · Jiaolong Yang · Xin Tong

The objective of this paper is to develop a functional system for translating spoken languages into sign languages, referred to as Spoken2Sign translation. The Spoken2Sign task is orthogonal and complementary to traditional sign language to spoken language (Sign2Spoken) translation. To enable Spoken2Sign translation, we present a simple baseline consisting of three steps: 1) creating a gloss-video dictionary using existing Sign2Spoken benchmarks; 2) estimating a 3D sign for each sign video in the dictionary; 3) training a Spoken2Sign model, which is composed of a Text2Gloss translator, a sign connector, and a rendering module, with the aid of the yielded gloss-3D sign dictionary. The translation results are then displayed through a sign avatar. As far as we know, we are the first to present the Spoken2Sign task in an output format of 3D signs. In addition to its capability of Spoken2Sign translation, we also demonstrate that two by-products of our approach—3D keypoint augmentation and multi-view understanding—can assist in keypoint-based sign language understanding. Code and models will be released to facilitate future research.

Thu 3 Oct. 5:40 - 5:50 PDT

HYPE: Hyperbolic Entailment Filtering for Underspecified Images and Texts

Wonjae Kim · Sanghyuk Chun · Taekyung Kim · Dongyoon Han · Sangdoo Yun

In an era where the volume of data drives the effectiveness of self-supervised learning, the specificity and clarity of data semantics play a crucial role in model training. Addressing this, we introduce HYPerbolic Entailment filtering (HYPE), a novel methodology designed to meticulously extract modality-wise meaningful and well-aligned data from extensive, noisy image-text pair datasets. Our approach leverages hyperbolic embeddings and the concept of entailment cones to evaluate and filter out samples with meaningless or underspecified semantics, focusing on enhancing the specificity of each data sample. HYPE not only demonstrates a significant improvement in filtering efficiency but also sets a new state-of-the-art in the DataComp benchmark when combined with existing filtering techniques. This breakthrough showcases the potential of HYPE to refine the data selection process, thereby contributing to the development of more accurate and efficient self-supervised learning models. Additionally, the image specificity $\epsilon_{i}$ can be independently applied to induce an image-only dataset from an image-text or image-only data pool for training image-only self-supervised models and showed superior performance when compared to the dataset induced by CLIP score.

Thu 3 Oct. 5:50 - 6:00 PDT

An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models

Liang Chen · Haozhe Zhao · Tianyu Liu · Shuai Bai · Junyang Lin · Chang Zhou · Baobao Chang

In this study, we identify the inefficient attention phenomena in Large Vision-Language Models (LVLMs), notably within prominent models like LLaVA-1.5, QwenVL-Chat and Video-LLaVA. We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs, suggesting a need for a sparser approach compared to textual data handling. To this end, we introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency by learning adaptive attention patterns in early layers and pruning visual tokens in subsequent ones. Our evaluations demonstrate FastV's ability to dramatically reduce computational costs (e.g., a 45\% reduction in FLOPs for LLaVA-1.5-13B) without sacrificing performance in a wide range of image and video understanding tasks. The computational efficiency and performance trade-off of FastV are highly customizable and pareto-efficient. It can compress the FLOPs of a 13B-parameter model to achieve a lower budget than that of a 7B-parameter model, while still maintaining superior performance. We believe FastV has practical values for deployment of LVLMs in edge devices and commercial models. Code will be released upon acceptance.

Thu 3 Oct. 6:00 - 6:10 PDT

uCAP: An Unsupervised Prompting Method for Vision-Language Models

A. Tuan Nguyen · Kai Sheng Tai · Bor-Chun Chen · Satya Narayan Shukla · Hanchao Yu · Philip Torr · Taipeng Tian · Ser-Nam Lim

This paper addresses a significant limitation that prevents Contrastive Language-Image Pretrained Models (CLIP) from achieving optimal performance on downstream image classification tasks. The key problem with CLIP-style zero-shot classification is that it requires domain-specific context in the form of prompts to better align the class descriptions to the downstream data distribution. In particular, prompts for vision-language models are domain-level texts (e.g., ``a centered satellite image of ...'') which, together with the class names, are fed into the text encoder to provide more context for the downstream dataset. These prompts are typically manually tuned, which is time consuming and often sub-optimal. To overcome this bottleneck, this paper proposes uCAP, a method to automatically learn domain-specific prompts/contexts using only unlabeled in-domain images. We achieve this by modeling the generation of images given the class names and a domain-specific prompt with an unsupervised likelihood distribution, and then performing inference of the prompts. We validate the proposed method across various models and datasets, showing that uCAP consistently outperforms manually tuned prompts and related baselines on the evaluated datasets: ImageNet, CIFAR-10, CIFAR-100, OxfordPets (up to 2\%), SUN397 (up to 5\%), and Caltech101 (up to 3\%).

Thu 3 Oct. 6:10 - 6:20 PDT

BRAVE: Broadening the visual encoding of vision-language models

Oguzhan Fatih Kar · Alessio Tonioni · Petra Poklukar · Achin Kulshrestha · Amir Zamir · Federico Tombari

Vision-language models (VLMs) are typically composed of a vision encoder, e.g. CLIP, and a language model (LM) that interprets the encoded features to solve downstream tasks. Despite remarkable progress, VLMs are subject to several shortcomings due to the limited capabilities of vision encoders, e.g. ``blindness'' to certain image features, visual hallucination, etc. To address these issues, we study broadening of the visual encoding capabilities of VLMs. We first comprehensively benchmark several vision encoders with different inductive biases for solving VLM tasks. We observe that there is no single encoding configuration that consistently achieves top performance across different tasks, and encoders with different biases can perform surprisingly similarly. Motivated by this, we introduce a method, named BRAVE, that consolidates features from multiple frozen encoders into a more versatile representation that can be directly fed as the input to a frozen LM. BRAVE achieves state-of-the-art performance on a broad range of captioning and VQA benchmarks and significantly reduces the aforementioned issues of VLMs, while requiring a smaller number of trainable parameters than existing methods and having a more compressed representation. Our results highlight the potential of incorporating different visual biases for a more broad and contextualized visual understanding of VLMs.