Oral Session
Oral 7A: Learning Architectures, Transfer, Continual And Long-Tail
Gold Room
Moderators: Tatiana Tommasi · Kai Han
On the Topology Awareness and Generalization Performance of Graph Neural Networks
Junwei Su · Chuan Wu
Many computer vision and machine learning problems are modelled as learning tasks on graphs, where graph neural networks (GNNs) have emerged as a dominant tool for learning representations of graph-structured data. A key feature of GNNs is their use of graph structures as input, enabling them to exploit the graphs' inherent topological properties—known as the topology awareness of GNNs. Despite the empirical successes of GNNs, the influence of topology awareness on generalization performance remains unexplored, particularly for node-level tasks that diverge from the assumption of data being independent and identically distributed (I.I.D.). The precise definition and characterization of the topology awareness of GNNs, especially concerning different topological features, are still unclear. This paper introduces a comprehensive framework to characterize the topology awareness of GNNs across any topological feature. Using this framework, we investigate the effects of topology awareness on GNN generalization performance. Contrary to the prevailing belief that enhancing the topology awareness of GNNs is always advantageous, our analysis reveals a critical insight: improving the topology awareness of GNNs may inadvertently lead to unfair generalization across structural groups, which might not be desired in some scenarios. Additionally, we conduct a case study using the intrinsic graph metric, the shortest-path distance, on various benchmark datasets. The empirical results of this case study confirm our theoretical insights. Moreover, we demonstrate the practical applicability of our framework by using it to tackle the cold start problem in graph active learning.
Improving Knowledge Distillation via Regularizing Feature Direction and Norm
Yuzhu Wang · Lechao Cheng · Manni Duan · Yongheng Wang · Zunlei Feng · Shu Kong
Knowledge distillation (KD) is a particular technique of model compression that exploits a large well-trained {\tt teacher} neural network to train a small {\tt student} network . Treating {\tt teacher}'s feature as knowledge, prevailing methods train {\tt student} by aligning its features with the {\tt teacher}'s, e.g., by minimizing the KL-divergence or L2-distance between their (logits) features. While it is natural to assume that better feature alignment helps distill {\tt teacher}'s knowledge, simply forcing this alignment does not directly contribute to the {\tt student}'s performance, e.g., classification accuracy. For example, minimizing the L2 distance between the penultimate-layer features (used to compute logits for classification) does not necessarily help learn a better {\tt student} classifier. We are motivated to regularize {\tt student} features at the penultimate layer using {\tt teacher} towards training a better {\tt student} classifier. Specifically, we present a rather simple method that uses {\tt teacher}'s class-mean features to align {\tt student} features w.r.t their {\em direction}. Experiments show that this significantly improves KD performance. Moreover, we empirically find that {\tt student} produces features that have notably smaller norms than {\tt teacher}'s, motivating us to regularize {\tt student} to produce large-norm features. Experiments show that doing so also yields better performance. Finally, we present a simple loss as our main technical contribution that regularizes {\tt student} by simultaneously (1) aligning the \emph{direction} of its features with the {\tt teacher} class-mean feature, and (2) encouraging it to produce large-\emph{norm} features. Experiments on standard benchmarks demonstrate that adopting our technique remarkably improves existing KD methods, achieving the state-of-the-art KD performance through the lens of image classification (on ImageNet and CIFAR100 datasets) and object detection (on the COCO dataset).
Spline-based Transformers
Prashanth Chandran · Agon Serifi · Markus Gross · Moritz Bächer
We introduce Spline-based Transformers, a novel class of Transformer models that eliminate the need for positional encoding. Inspired by workflows using splines in computer animation, our Spline-based Transformer embeds an input sequence of elements as a smooth trajectory in latent space. Overcoming drawbacks of positional encoding such as sequence length extrapolation, Spline-based Transformers also provide a novel way for users to interact with transformer latent spaces by directly manipulating the latent control points to create new latent trajectories and sequences. We demonstrate the superior performance of our approach in comparison to conventional positional encoding on a variety of datasets, ranging from synthetic 2D to large-scale real-world datasets of images, 3D shapes, and animations.
Anytime Continual Learning for Open Vocabulary Classification
Zhen Zhu · Yiming Gong · Derek Hoiem
We propose an approach for anytime continual learning (AnytimeCL) for open vocabulary image classification. The AnytimeCL problem aims to break away from batch training and rigid models by requiring that a system can predict any set of labels at any time and efficiently update and improve when receiving one or more training samples at any time. Despite the challenging goal, we achieve substantial improvements over recent methods. We propose a dynamic weighting between predictions of a partially fine-tuned model and a fixed open vocabulary model that enables continual improvement when training samples are available for a subset of a task's labels. We also propose an attention-weighted PCA compression for compression of training features that reduces storage and computation with little impact to model accuracy. Our methods are validated with experiments that test flexibility of learning and inference.
Weighted Ensemble Models Are Strong Continual Learners
Imad Eddine Marouf · Subhankar Roy · Enzo Tartaglione · Stéphane Lathuiliere
In this work, we study the problem of continual learning (CL) where the goal is to learn a model on a sequence of tasks, such that the data from the previous tasks becomes unavailable while learning on the current task data. CL is essentially a balancing act between being able to learn on the new task (i.e., plasticity) and maintaining the performance on the previously learned concepts (i.e., stability). Intending to address the stability-plasticity trade-off, we propose to perform weight-ensembling of the model parameters of the previous and current tasks. This weighted-ensembled model, which we call Continual Model Averaging (or CoMA), attains high accuracy on the current task by leveraging plasticity, while not deviating too far from the previous weight configuration, ensuring stability. We also propose an improved variant of CoMA, named Continual Fisher-weighted Model Averaging (or CoFiMA), that selectively weighs each parameter in the weights ensemble by leveraging the Fisher information of the weights of the model. Both variants are conceptually simple, easy to implement, and effective in attaining state-of-the-art performance on several standard CL benchmarks. The code is attached to the paper submission.
COD: Learning Conditional Invariant Representation for Domain Adaptation Regression
Hao-Ran Yang · Chuan-Xian Ren · You-Wei Luo
Aiming to generalize the label knowledge from a source domain with continuous outputs to an unlabeled target domain, Domain Adaptation Regression (DAR) is developed for complex practical learning problems. However, due to the continuity problem in regression, existing conditional distribution alignment theory and methods with discrete prior, which are proven to be effective in classification settings, are no longer applicable. In this work, focusing on the feasibility problems in DAR, we establish the sufficiency theory for the regression model, which shows the generalization error can be sufficiently dominated by the cross-domain conditional discrepancy. Further, to characterize conditional discrepancy with continuous conditioning variable, a novel Conditional Operator Discrepancy (COD) is proposed, which admits the metric property on conditional distributions via the kernel embedding theory. Finally, to minimize the discrepancy, a COD-based conditional invariant representation learning model is proposed, and the reformulation is derived to show that reasonable modifications on moment statistics can further improve the discriminability of the adaptation model. Extensive experiments on standard DAR datasets verify the validity of theoretical results and the superiority over SOTA DAR methods.
Echoes of the Past: Boosting Long-tail Recognition via Reflective Learning
Qihao Zhao · YALUN DAI · Shen Lin · Wei Hu · Fan Zhang · Jun Liu
In real-world scenarios, where knowledge distributions exhibit long-tail. Humans manage to master knowledge uniformly across imbalanced distributions, a feat attributed to their diligent practices of reviewing, summarizing, and correcting errors. Motivated by this learning process, we propose a novel learning paradigm, called reflecting learning, in handling long-tail recognition. Our method integrates three processes for reviewing past predictions during training, summarizing and leveraging the feature relation across classes, and correcting gradient conflict for loss functions. These designs are lightweight enough to plug and play with existing long-tail learning methods, achieving state-of-the-art performance in popular long-tail visual benchmarks. The experimental results highlight the great potential of reflecting learning in dealing with long-tail recognition. Our code will be open-sourced upon acceptance.
Chameleon: A Data-Efficient Generalist for Dense Visual Prediction in the Wild
Donggyun Kim · Seongwoong Cho · Semin Kim · Chong Luo · Seunghoon Hong
Large language models have evolved data-efficient generalists, benefiting from the universal language interface and large-scale pre-training. However, constructing a data-efficient generalist for dense visual prediction presents a distinct challenge due to the variation in label structures across different tasks. Consequently, generalization to unseen dense prediction tasks in the low-data regime is not straightforward and has received less attention from previous vision generalists. In this study, we explore a universal model that can flexibly adapt to unseen dense label structures with a few examples, enabling it to serve as a data-efficient vision generalist in diverse real-world scenarios. To this end, we base our method on a powerful meta-learning framework and explore several axes to improve its performance and versatility for real-world problems, such as flexible adaptation mechanisms and scalability. We evaluate our model across a spectrum of unseen real-world scenarios where low-shot learning is desirable, including video, 3D, medical, biological, and user-interactive tasks. Equipped with a generic architecture and an effective adaptation mechanism, our model flexibly adapts to all of these tasks with at most 50 labeled images, showcasing a significant advancement over existing data-efficient generalist approaches.
Mamba-ND: Selective State Space Modeling for Multi-Dimensional Data
Shufan Li · Aditya Grover · Harkanwar Singh
In recent years, Transformers have become the de-facto architecture for sequence modeling on text and a variety of multi-dimensional data, such as images and video. However, the use of self-attention layers in a Transformer incurs prohibitive compute and memory complexity that scales quadratically w.r.t. the sequence length. A recent architecture, Mamba, based on state space models has been shown to achieve comparable performance for modeling text sequences, while scaling linearly with the sequence length. In this work, we present Mamba-ND, a generalized design extending the Mamba architecture to arbitrary multi-dimensional data. Our design alternatively unravels the input data across different dimensions following row-major orderings. We provide a systematic comparison of Mamba-ND with several other alternatives, based on prior multi-dimensional extensions such as Bi-directional LSTMs and S4ND. Empirically, we show that Mamba-ND demonstrates performance competitive with the state-of-the-art on a variety of multi-dimensional benchmarks, including ImageNet-1K classification, HMDB-51 action recognition, and ERA5 weather forecasting.
HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution
Xiang Zhang · Yulun Zhang · Fisher Yu
Transformers have exhibited promising performance in computer vision tasks including image super-resolution (SR). However, popular transformer-based SR methods often employ window self-attention with quadratic computational complexity to window sizes, resulting in fixed small windows with limited receptive fields. In this paper, we present a general strategy to convert transformer-based SR networks to hierarchical transformers (HiT-SR), boosting SR performance with multi-scale features while maintaining an efficient design. Specifically, we first replace the commonly used fixed small windows with expanding hierarchical windows to aggregate features at different scales and establish long-range dependencies. Considering the intensive computation required for large windows, we further design a spatial-channel correlation method with linear complexity to window sizes, efficiently gathering spatial and channel information from hierarchical windows. Extensive experiments verify the effectiveness and efficiency of our HiT-SR, and our improved versions of SwinIR-Light, SwinIR-NG, and SRFormer-Light yield state-of-the-art SR results with fewer parameters, FLOPs, and faster speeds ($\sim7\times$).