Skip to yearly menu bar Skip to main content


Poster

MMBENCH: Is Your Multi-Modal Model an All-around Player?

Yuan Liu · Haodong Duan · Yuanhan Zhang · Bo Li · Songyang Zhang · Wangbo Zhao · Yike Yuan · Jiaqi Wang · Conghui He · Ziwei Liu · Kai Chen · Dahua Lin

# 182
[ ] [ Project Page ] [ Paper PDF ]
Thu 3 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Large vision-language models (VLMs) have recently achieved remarkable progress, exhibiting impressive multimodal perception and reasoning abilities. However, effectively evaluating these large VLMs remains a major challenge, hindering future development in this domain. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but lack fine-grained ability assessment and robust evaluation metrics. Meanwhile, subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, which is not scalable and may display significant bias. In response to these challenges, we propose MMBench, a bilingual benchmark for assessing the multi-modal capabilities of VLMs. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of the following key features: 1. MMBench is meticulously curated with well-designed quality control schemes, surpassing existing similar benchmarks in terms of the number and variety of evaluation questions and abilities; 2. MMBench introduces a rigorous CircularEval strategy and incorporates large language models to convert free-form predictions into pre-defined choices, which helps to yield accurate evaluation results for models with limited instruction-following capabilities. 3. MMBench incorporates multiple-choice questions in both English and Chinese versions, enabling an apples-to-apples comparison of VLMs' performance under a bilingual context. To summarize, MMBench is a systematically designed objective benchmark for a robust and holistic evaluation of vision-language models. We hope MMBench will assist the research community in better evaluating their models and facilitate future progress in this area.

Chat is not available.