Skip to yearly menu bar Skip to main content


Poster

Aligning Neuronal Coding of Dynamic Visual Scenes with Foundation Vision Models

Rining Wu · Feixiang Zhou · Ziwei Yin · Jian Liu

# 126
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Project Page ] [ Paper PDF ]
Thu 3 Oct 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Our brains represent the ever-changing environment with neurons in a highly dynamic fashion. The temporal features of visual pixels in dynamic natural scenes are entangled into the retinal neuronal coding patterns, where effective establishing their intrinsic temporal relationships is crucial. Recent foundation vision models have paved an advanced way of understanding image pixels. Yet, neuronal coding in the brain largely lacks a deep understanding of its alignment with pixels. Most previous studies employ static images or artificial videos derived from static images for emulating more real and complicated stimuli. Despite these simple scenarios effectively help to separate key factors influencing visual coding, complex temporal relationships receive no consideration. To decompose the temporal features of visual coding in natural scenes, here we propose Vi-ST, a spatiotemporal convolutional neural network fed with a self-supervised Vision Transformer (ViT) prior, aimed at unraveling the temporal-based encoding patterns of retinal neuronal populations. The model demonstrates robust predictive performance in generalisation tests. Additionally, through detailed ablation experiments, we demonstrate the significance of each temporal module. Furthermore, we introduce a visual coding evaluation metric designed to integrate temporal considerations and compare the impact of different numbers of neuronal populations on complementary coding. In conclusion, our proposed Vi-ST demonstrates a novel modelling framework for neuronal coding of dynamic visual scenes in the brain, effectively aligning our brain representation of video with neuronal activity.

Chat is not available.