Skip to yearly menu bar Skip to main content


Poster

Freeview Sketching: View-Aware Fine-Grained Sketch-Based Image Retrieval

Aneeshan Sain · Pinaki Nath Chowdhury · Subhadeep Koley · Ayan Kumar Bhunia · Yi-Zhe Song

# 254
Strong blind review: This paper was not made available on public preprint services during the review process Strong Double Blind
[ ] [ Project Page ] [ Paper PDF ]
Fri 4 Oct 1:30 a.m. PDT — 3:30 a.m. PDT

Abstract:

In this paper, we delve into the intricate dynamics of Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) by addressing a critical yet overlooked aspect -- the choice of viewpoint during sketch creation. Unlike photo systems that seamlessly handle diverse views through extensive datasets, sketch systems, with limited data collected from fixed perspectives, face challenges. Our pilot study, employing a pre-trained FG-SBIR model, highlights the system's struggle when query-sketches differ in viewpoint from target instances. Interestingly, a questionnaire shows users desire autonomy, with a significant percentage favouring view-specific retrieval. To reconcile this, we advocate for a view-aware system, seamlessly accommodating both view-agnostic and view-specific tasks. Overcoming dataset limitations, our first contribution leverages multi-view 2D projections of 3D objects, instilling cross-modal view awareness. The second contribution introduces a customisable cross-modal feature through disentanglement, allowing effortless mode switching.

Chat is not available.